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Abstract

The conventional cloud-centric IoT application does not meet the requirement of

the quick reaction of time-critical applications. The idea of edge and fog computing

arrived to overcome the limitation of cloud computing in the domain of IoT ap-

plications. In fog computing, the workloads get distributed across the fog devices,

and the placement of services in the nearest fog devices drastically reduces the net-

work delay, connectivity, and reliability issues and delivers real-time capabilities

as an extension, it reduces energy consumption and network overhead in the case

of large sensor networks. However, achieving seamless interoperability, platform

independence, and automatic deployment of services becomes the major challenge

over heterogeneous fog devices. This work proposes an adaptation of the OA-

SIS - Topology and Orchestration Specification for Cloud Applications (TOSCA)

for service deployment for fog computing. With TOSCA, we build an integrated

and standards-based fog computing federation framework that abstracts all the

heterogeneity and complexities and offers a user-friendly paradigm to model and

dynamically deploy fog services, on-demand, on the fly, from a remote system. The

framework uses (i) standard TOSCA Service Template for application modeling.

(ii) Docker Containers (OS-level virtualization) for platform independence, and

(iii) Docker Swarm (container orchestration tool) manages seamless coordination

and cooperation across heterogeneous fog devices. Moreover, the fog application is

dynamically deployed by a lightweight TOSCA-compliant orchestrator on a set of

out-of-the-box fog devices. The case study on the framework indicates convincing

resource consumption by the orchestration process on these resource-constrained

fog devices. The framework realizes various fog applications through the dynamic

deployment of custom or user-developed services on the fly.
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Chapter 1

Introduction

The beginning of the era of Internet of Things (IoT) applications was cloud-centric.

All the diverse data collected through the sensors from the different fields are

stored in the cloud. The cloud has virtually infinite computational power for

processing that sensor data, generating an actuation signal to send back to the

actuators on that site. This architecture has some drawbacks. First, the cloud

is physically placed thousands of kilometers away from the sensors and actuators

in most cases, which adds a significant network delay between sensing and actua-

tion. That is undesirable for some real-time applications. Second, this architecture

needs stable connectivity to the cloud for continuously streaming the data. How-

ever, the IoT devices may have to handle unstable connectivity in the real world,

leading to the reliability issues of the IoT applications. Third, with the exponen-

tial increase of IoT devices data generation rate has also increased rapidly. It is

becoming an overhead for the network to move vast volumes of data to the cloud.

Therefore, this cloud-centric architecture fails to meet the several requirements of

real-time applications criteria of low latency and high reliability [7]. Therefore,

the concept of Edge and Fog computing comes into the picture to address these

problems. The solution to this issue is to move this processing component from the

cloud platform to the local hybrid distributed processing architecture known as

Fog computing [8, 9]. As an extension, this solution reduces the overall network

load as well. This fog federation allows seamless coordination and cooperation

between heterogeneous devices (gateway devices such as Raspberry Pi, Drones,

1
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Network Switches, and Routers). In Fog computing, the utilization of gateway

devices acts as an alternative or supportive computational equipment of the cloud

[36]. The biggest challenge in this architecture is having reliability, portability,

interoperability, and platform independence on top of a set of heterogeneous de-

vices [6, 10].

The cloud community also faced a similar problem with a lack of standardiza-

tion and vendor lock-in or portability of composite cloud applications across the

different cloud service providers [27]. OASIS - Topology and Orchestration Spec-

ification for Cloud Applications (TOSCA) addressed the problem [5]. TOSCA

automates the entire life cycle of a cloud application with operations like ’create’,

’configure’, ’start’, ’stop’, and ’delete’ [4]. In a nutshell, TOSCA is a modeling

language used to create the blueprint of composite cloud applications. Developers

can model their applications in a YAML1 file, known as TOSCA Service Template,

and deploy them on a cloud platform through a TOSCA- compliant orchestrator.

To implement the TOSCA standard, a TOSCA-compliant orchestrator uses im-

plementation scripts (Shell script, Python script2, or any IT Automation tool like

Ansible3, Chef4, Puppet5).

This thesis proposes an extension of the TOSCA standard for fog computing

framework, FogDEFT6 (Fog computing out of the box: Dynamic dEployment of

Fog service containers with TOSCA), to provide user-friendly development and

deployment paradigms for fog applications. Therefore, with the standard TOSCA

Service Template, an application developer will describe the fog service’s con-

ceptual structure (or blueprint). A lightweight orchestrator tool will take TOSCA

Service Templates and dynamically deploys these services on a set of heterogeneous

fog devices. This deployment means starting one or more Docker Containers in

1https://yaml.org
2https://www.python.org
3https://www.ansible.com
4https://www.chef.io
5https://puppet.com
6https://github.com/cloud-and-smart-labs/fog-service-orchestration

https://yaml.org
https://www.python.org
https://www.ansible.com
https://www.chef.io
https://puppet.com
https://github.com/cloud-and-smart-labs/fog-service-orchestration
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swarm mode or could be in standalone mode. These containers can talk to each

other like microservice architecture and exchange sensor data and actuation sig-

nals seamlessly, irrespective of their hardware architecture and placement inside

a fog federation.

1.1 Motivation

The number of connected devices on the internet is a few billion. This number

increases rapidly with the Industrial Internet of Things (IIoT) or Industry 4.0. In-

terestingly, each device connected to the internet comes with some computational

power. The core idea of Fog computing is to accumulate and utilize these devices’

computational power at the network’s edge. However, the adoption rate of Fog

computing is not in proportion with the performance it proposes because resource

constraints, heterogeneity, and lack of standardization, require application-specific

proprietary solutions.

Adopting Fog computing and deploying the services of an IoT application on

fog nodes opens a nontrivial area of research. Several automation tools have been

developed with the rise of Infrastructure as Code (IaC) to manage, configure, and

provision servers and data centers. None of them primarily targets the deployment

of fog services. Unlike conventional computing systems, fog devices are heteroge-

neous and have a completely different hardware architecture that may run on

different software and probably optimized to perform specific tasks. However, the

main requirement of a fog federation is to have seamless cooperation and inter-

operability across all the fog devices inside the network. Therefore, the dynamic

deployment of a service on fog devices imposes a challenge of handling platform

independence, interoperability, and portability with resource constraints. There-

fore, some technology is supposed to be developed to unlock this computational

power, and any fog application can deploy services in a distributed fashion. With

this motivation in this thesis, we propose a standardized framework for fog service

deployment called ’FogDEFT’.
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1.2 Contributions

The main contributions of this thesis are:

1. Creating node and relationship types for describing fog services in TOSCA.

2. Relevant actuation scripts for the created node and relationship types.

3. Dynamic deployment of services on top of fog nodes on the fly with a

lightweight orchestrator.

4. Demonstrate deployment of fog application across multiple networks.

5. System design and modeling (creating TOSCA Service Template) of a domain-

specific fog application followed by deployment (a case study of the frame-

work).

1.3 Summary

The conventional cloud-centric IoT model has the limitation of latency and creates

network overhead. In Fog computing, on-premise placement on this processing

component eliminates the issue of latency, connectivity, reliability, and network

overhead. The challenges in this Fog computing are (i) Automatic and dynamic

deployment of the services, (ii) Platform independence, and (iii) Interoperability

across heterogeneous devices. The cloud communities also faced a similar prob-

lem due to a lack of standardization. OASIS TOSCA addressed the issue with

standard application modeling technology. The hypothesis of the project is: (i)

Adopt the standard TOSCA Service Template for modeling fog application, (ii)

Use containerization for platform independence, and (iii) Container orchestration

for interoperability. Further, automatically deploy the services on the fly with a

lightweight orchestrator using standard TOSCA Service Templates.
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1.4 Outline

This chapter introduced the scope of the project and illustrated the problem de-

scription. The rest of the thesis is organized like this. Chapter 2 discusses all

sorts of related work in this domain up to this date. Chapter 3 briefly describes

the fog and other hardware devices used in experiments and case studies. Chap-

ter 4 discusses the FogDEFT framework internal details. Chapter 5 illustrates

the on-demand deployment of service on heterogeneous fog devices. Chapter 6

includes two case studies on the framework. Finally, Chapter 7 concludes with

future potential applications of TOSCA in IoT.



Chapter 2

Related Work

Fog computing resolves many problems of cloud-centric IoT applications. How-

ever, fog computing comes with challenges that significantly slow down the adop-

tion rate of fog computing. On-demand service deployment on the fog node is one

of these challenges discussed in Chapter 1. Therefore, application/service deploy-

ment for fog computing has been studied extensively. This chapter discusses all

sorts of related application deployment and evaluation works already being done

in different domains.

2.1 Performance evaluation of container orches-

tration on fog devices

In [3], P Bellavista et al. conducted a thorough feasibility study on fog comput-

ing deployment on Raspberry Pi with performance overhead of containerization

technologies (LXC, Docker, CRIU), container orchestration tools (Docker Swarm,

Kubernetes, Apache Mesos), filesystems (AUFS, OverlayFS). They gave an im-

pressive comparison between natively running code and container execution.

P Kayal in [23] reviewed container orchestration service Kubernetes and its

architecture and implementation from the point of view of IoT-driven application

and fog computing. Furthermore, point outs that (i) required functionality is

achievable without significant penalty and (ii) some shortcomings of Kubernetes

in distributed deployment on fog infrastructure.

6
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2.2 Dynamic deployment of applications

In [20], N Ferry et al. carried out a case study of GeneSIS in smart buildings. They

showed that GeneSIS is secure by design from the development and deployment

to the operation of IoT-based systems and keeps adapting to the evolving security

threats to maintain their trustworthiness.

In [21], HA Hassan and RP Qasha propose a new idea to build a deployment

model for the IoT based distributed systems on a user-friendly and straightfor-

ward description of the intelligent devices’ installation, configuration, and their

computation and communication with the IoT based system parts with Ansible-

based YAML description. The work minimizes the efforts to deploy the IoT-driven

distributed applications on various infrastructures consisting of fog and cloud.

In [34], O Tomarchio et al. proposed a TOSCA-based framework, ‘TORCH,’

for deploying and orchestrating classical and containerized cloud applications on

multiple cloud providers. The main benefit of the framework is the option or

adaptability to add support to the cloud service provider platform at minimal

modification effort, and it provides web based tool to manage all deployments.

In [14], R Dautov et al. proposed software updates provisioning architecture

(hierarchical) that pushes the update from the cloud to terminal edge devices

through the edge gateways. These edge gateways run some agents as microservice

containers connecting edge devices to the centralized cloud platform and installing

the firmware update at the edge devices in a targeted manner.

In [32], H Song et al. describe joint research on an industrial use case Smart

Healthcare application provider that uses a model-based approach to provide a

fleet of edge devices or gateways for automatic deployment. That fleet selection

process uses a set of constraints (hard and soft constraints) to pick the correct

and balanced distribution of software.

2.3 Deployment of fog applications

B Donassolo et al. in [18] proposed another orchestration framework called ‘FI-

TOR,’ an automated deployment and microservice migration solution for IoT ap-
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plications. The framework uses ”Optimized Fog Service Provisioning” (O-FSP)

based on a greedy approach that outperforms other relevant strategies in terms of

(i) CPU usage, (ii) acceptance rate, and (iii) provisioning cost.

In [19], N Ferry et al. developed a framework for continuous deployment across

a set of heterogeneous IoT, edge devices, and cloud platforms for decentralized

computing called ”Generation and Deployment of Smart IoT Systems (GeneSIS).”

GeneSIS provides (i) an execution engine to support automatic deployment across

a set of IoT, edge devices, and cloud resources and (ii) a domain-specific modeling

language for modeling and the deployment and orchestration of Smart IoT-driven

systems.

In [37], S Venticinque and A Amato proposed a new fog service placement

methodology. The methodology’s effectiveness is demonstrated in the energy do-

main with smart grid.

In [15], G Davoli et al. developed a modular orchestration system called

‘FORCH.’ The orchestrator is aware of different service models (SaaS/PaaS/IaaS)

and dynamically deploys services and manages resources on the fog nodes.

In [29], H Sami and A Mourad proposed a new framework for deploying fog

service on-demand on the fly with the existence of volunteering nodes (devices).

The framework is based on Kubeadm and Docker. Moreover, the framework op-

timizes the container placement problem with an ”Evolutionary Memetic Algo-

rithm” (MA) that uses heuristics to make decisions.

In [30], H Sami et al. proposed a context-aware and resource-efficient approach

for deploying microservices container on-demand named ’Vehicular-OBUs-As-On-

Demand-Fogs.’ The scheme embeds flexible networking architecture combining

cellular technologies and ad-hoc wireless network (802.11p) used in vehicles and

a Kubeadm-based clustering approach with docker container-based microservices

deployment. It provides an on-demand service placement technology for fog and

vehicles based on an ’Evolutionary Memetic Algorithm’.
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2.4 Dynamic deployment of fog applications

In [22], S Hoque et al. have carried out a technical evaluation of docker container

and container orchestration tools, their capability, limitations, and how container-

ization can impact application performance. The result shows that significant

adjustments are required to meet the fog environment needs, and they have pro-

posed a framework based on the docker swarm to address issues with the help of

‘OpenloTFog’ toolkits.

In 2013 F Li et al. put the first effort to use TOSCA, the new cloud standard,

for IoT applications and demonstrated the feasibility of modeling IoT components

gateways and drivers for building Air Handling Unit (AHU) with the first edition

of TOSCA [24].

ACF da Silva et al. in [12] automatically deployed an IoT application with

OpenTOSCA based on Mosquitto Message Broker running on the cloud, and the

publishers and subscribers were running in two different raspberry pis. Later, in

[13], they automatically deployed an IoT application out of the box where a python

script on raspberry pi pushes the data to the message broker on a cloud, and an-

other virtual machine is hosting a web-based dashboard to present the sensor data.

They validated this deployment with three case studies of emerging middleware

(i) OpenMTC, (ii) Eclipse Mosquitto, and (iii) FIWARE Orion Context Broker.

In [35], A Tsagkaropoulos et al. presented TOSCA extensions for modeling

applications relying on any combination of technologies and discussed semantic

enhancements, optimization aspects, and methodology that should be followed for

edge and fog deployment support. Furthermore, added a comparison with other

cloud application deployment approaches.

In [31], HE Solayman and RP Qasha, used TOSCA for deploying Docker con-

tainers of IoT applications for Intensive Care Unit (ICU). The demonstration

shows automation of IoT application provisioning in heterogeneous environments

consisting of hardware components and cloud instance message broker for network

communication between components containerized with docker containers.

In this work we propose the idea of “fog out of the box” where the applica-
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tions services are dynamically deployed on the fly without any cloud involvement

(except the cloning of the code or container images from registry/repositories), as

J Delsing et al. argued in [17] about open internet automation limitations and

discussed the idea of local cloud in IoT automation. Since such automation of IoT

is geographically and physically local, hence local cloud meets requirements of (1)

interoperability issue of a wide range of IoT and some legacy devices, (2) real-time

capabilities as latency guarantee required for automation system, (3) scalability of

enormous scale, (4) security fence from the external network of automation system

and (5) ease of application engineering with integrity, and agility. Therefore, in

this work the fog federation is dynamically created with a standardize TOSCA

Service Template and container orchestration tool, Docker Swarm. The orchestra-

tion process will either run on the fog node itself or any PC/laptop/workstation

that remotely orchestrates services on the fog nodes.

In recent years, significant work has been published regarding smart IoT-based

solutions for greenhouse production and farming [28, 33, 2, 26]. And some work

in Cold Storage as well [1]. The proposed framework FogDEFT can realize such

use cases to achieve the highest level of convenience and can change the climate of

greenhouse or cold storage for specific crops and products, respectively. The case

study of such application with this framework is demonstrated in Chapter 6.

2.5 Summary

All discussed related work and their focus in this chapter are summarized in Ta-

ble 2.1. In contrast, our proposed fog federation framework uses the TOSCA

standard for modeling the fog application and gives a user-friendly way to design

and dynamically deploy fog service across fog nodes on demand through a single

command.
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Chapter 3

Fog devices and hardware

overview

This Chapter briefly discusses IoT hardware. The experiments and case studies

used two different IoT hardware devices based on microcontrollers and micropro-

cessors. Only the microprocessors are considered fog nodes, where fog services

get deployed. The microcontroller primarily provides an interface to the ana-

log sensors and actuators, whereas digital sensors can directly interface with the

microprocessor-based devices. Therefore, two different types of sensors and ac-

tuators are analog and digital. The following sections give a brief overview of

microcontroller and microprocessor-based systems (used in our experiments and

case studies), their capability and limitations, and digital and analog sensors and

actuators. Later, Chapter 6, with case studies, shows the generic system design

for deploying different fog services with these hardware devices.

3.1 Microcontrollers based devices

A microcontroller is an integrated circuit (IC) designed to perform an embedded

system’s specific operation (single task). The main elements of the microprocessor

are the processor (could be 4-bit, 8-bit, 16-bit, 32-bit, 64-bit processor) that per-

forms basic arithmetic, logic, and I/O operations. Program memory non-volatile

memory stores programs or instructions to be executed. Data memory cloud be

12
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Figure 3.1: Arduino Uno

volatile memory for temporary data storage. Other supporting elements (highly

relevant to this IoT context) Analog to Digital Converter (ADC) that converts

analog signals to digital signals, Digital to Analog Converter (DAC) that converts

digital signals to analog signals, Serial port is an I/O port to connect other devices

(e.g., USB). Therefore, microcontrollers are used for various purposes, including

automation, manufacturing, robotics, automotive, and IoT applications.

3.1.1 Arduino Uno

Arduino Uno1, shown in Figure 3.1, is (open-source hardware) a microcontroller

board based on the ATmega328P microcontroller. When a program is loaded,

it executes the same program if connected to power. It has fourteen digital I/O

pins (six-pin PWM output capable) and six analog input pins with 10-bit ADC.

Therefore, Arduino can interact with both analog and digital sensors and actu-

ators. The board has a serial port to interface with other devices and exchange

data across the device.

3.1.2 Arduino Nano 33 BLE Sense

Arduino Nano 33 BLE Sense2, shown in Figure 3.2, similar to Arduino Uno, is also

the smallest form factor microcontroller board. This board is powered by a 32-

1https://docs.arduino.cc/hardware/uno-rev3
2https://docs.arduino.cc/hardware/nano-33-ble-sense

https://docs.arduino.cc/hardware/uno-rev3
https://docs.arduino.cc/hardware/nano-33-ble-sense
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Figure 3.2: Arduino Nano 33 BLE Sense

bit ARM based Cortex-M4 CPU and 1MB of program memory and has onboard

Bluetooth pairing via NFC and ultra-low power consumption modes, a micro-USB

connector, and a bunch of onboard sensors:

• Nine axes inertial sensor

• Humidity and temperature sensor

• Barometric sensor

• Microphone

• Gesture, proximity, light color, and light intensity sensor

3.2 Microprocessors based devices

A microprocessor is an integrated circuit (IC) in the computer we use daily. A

microprocessor consists of an Arithmetic Logical Unit (ALU) that performs arith-

metic and logical operation on data, a Control Unit (CU) control the flow of

data/instructions inside the system memory and bus, and an array of registers

with some special register like Program Counter (PC), Stack Pointer (SP), etc.

A microprocessor implements an Instruction Set Architecture (IAS) and executes

these instructions to perform a particular task. The regular personal computer

and smartphones we use consist of a microprocessor of some architecture (x86 or

ARM).
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Figure 3.3: Raspberry Pi 4 Model B

3.2.1 Raspberry Pi

Raspberry Pi3 is a single-board credit-card-sized computer that runs a Debian-

based Linux distribution called Raspberry Pi OS (can run other operating systems

as well, e.g. Ubuntu, Ubuntu core, Windows 10 IoT Core). It has Serial ports

(USB), a display port (more than once in the current version), and 40 GPIO pins

to interface sensors and actuators. From an IoT point of view, Raspberry Pi is a

gateway device. As the Raspberry Pi is a computer with an ARM-based micro-

processor. It can not interface with analog sensors and actuators. Raspberry Pi

works with digital sensors and actuators only.

The Raspberry Pi, 4 Model B4, is shown in Figure 3.3. It has Gigabit Ethernet,

onboard wireless networking, and Bluetooth and is powered by Broadcom chip

(BCM2711), ARM v8 based Quad-core Cortex-A72 64-bit 1.5GHz processor with

4GB RAM. Our experiments and case studies include an older version of Raspberry

Pi boards like Raspberry Pi 3 Model B5.

3.2.2 Personal Computer

Personal computers and workstations (Intel x86 based) are available on-premises

and can be used in fog infrastructure (just like a local cloud). In some experiments

3https://www.raspberrypi.org/
4https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
5https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

https://www.raspberrypi.org/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
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Table 3.1: IoT device list

Device Name
Processor

Architecture
Memory

Size
Operating
System

Arduino Uno
Microcontroller
ATmega328P

32 KB -

Arduino Nano 33
BLE Sense

ARM Cortex-M4 1 MB -

Raspberry Pi 4 ARMv7l 32-Bit 4 GB
Raspberry Pi

OS 10

Raspberry Pi 4 ARMv8 64-Bit 4 GB
Raspberry Pi

OS 11

PC Intel x86-64 4-8 GB
Ubuntu 20.04
Debian 11

Virtual Machines Intel x86-64 2-4 GB
Ubuntu 20.04
Debian 11

Workstation
Intel Xeon W-2145

3.70GHz × 16
32 GB Ubuntu 20.04

and case studies, personal computers, workstations, and virtual machines are also

included in the fog federation.

3.3 Other hardware

Apart from microcontrollers and microprocessors handful of sensors and actuators

are also used for experiments, testing, and case studies of the framework. The sen-

sors include DHT116, digital temperature, and humidity sensors. The actuators

include LED and Servomotor7.

3.4 Summary

All the devices used in the experiment and the FogDEFT framework case studies

are summarized and listed in Table 3.1, and sensors and actuators are listed in

Table 3.2.

6https://www.adafruit.com/product/386
7https://www.towerpro.com.tw/product/sg90-7/

https://www.adafruit.com/product/386
https://www.towerpro.com.tw/product/sg90-7/
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Table 3.2: Sensors and Actuators
Sensors Actuators

DHT11 LED

Servomotor



Chapter 4

The framework FogDEFT

The FogDEFT (Fog computing out of the box: Dynamic dEployment of Fog

service containers with TOSCA) framework is a fog federation framework built on

the extension of the TOSCA standard, which is the de-facto standard for modeling

cloud applications. The framework enables seamless cooperation and coordination

between fog devices in the network hides the heterogeneity, offers a user-friendly

development paradigm for the custom or user-developed fog application, and real-

izes dynamic deployment of the fog services on the fly on demand. The FogDEFT

framework maintains three layers of abstraction. In this Chapter, in subsequent

sections, we discuss the problem and challenges followed by how this three-layer

of abstraction ensures platform independence, interoperability, and portability of

fog services across heterogeneous fog devices.

4.1 Problem description

The development of a framework for deploying standardized user-developed ser-

vices out of the box throws a few challenges. These challenges can be summarized

into two categories:

18
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4.1.1 Platform independence and interoperability over het-

erogeneous hardware

The idea of a fog federation is to include all devices available locally on-premises

for computational purposes. Then the local processing task is handled with the ac-

cumulated computational capability of these devices. The locally available devices

primarily include network and gateway devices and some on-premises core com-

putational devices (e.g., from private clouds). These devices are built by different

manufacturers, based on specific hardware architecture, optimized for particular

tasks, and could run on individual software. For example, Table 3.1 from the

previous Chapter shows the collection of heterogeneous devices we used for our

experiments.

These are all diverse types of hardware commonly we come across in typi-

cal scenarios. Each of them has a different type of features, capabilities, and

performance. The Raspberry Pi has 40 GPIO pins to interact with sensors and

actuators. However, personal computers do not have that capability. Personal

computers have much more processing power than Raspberry Pi. Even comparing

Raspberry Pi 3 and Raspberry Pi 4, there are also significant differences in the pro-

cessing power. Therefore, a significant heterogeneity over hardware and software

can be envisioned as relevant to the fog infrastructure. So, while orchestrating

the services on such fog devices, we must be able to place these services across

the nodes (heterogeneous devices) based on their capabilities and requirements of

services. Therefore these services must serve their purpose independent of their

platform. Furthermore, these services should be able to talk to each other like a

conventional microservice architecture irrespective of the placement of the services

over the fog devices, which will ensure interoperability across the fog federation.

4.1.2 Modeling of user-developed services with TOSCA

TOSCA’s development acknowledges the issue of standardization and portability

of cloud applications. TOSCA and relevant basics are discussed in Section 4.4. EU
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H2020 RADON Project1 extended TOSCA and provides reusable TOSCA types

of application runtimes, computing resources, and Function as a Service (FaaS)

platforms in the form of abstract and deployable modeling entities [11]. Another

extension of TOSCA called TOSCAData focuses on modeling data pipeline-based

cloud applications [16]. Because TOSCA is platform agnostic, the language pro-

vides a mechanism to extend the definitions with additional domain-specific or

vendor-specific information. We can extend/adapt the TOSCA to model user-

developed fog applications.

Therefore, supporting fog service with TOSCA requires the creation of appro-

priate Nodes and Relationship types. These Nodes and Relationship types will

represent the components of the fog services. Then a developer can write a TOSCA

Service Template with Node and Relationship types for user-developed fog appli-

cations. A lightweight TOSCA-complaint orchestrator (discussed in Chapter 5)

can take the TOSCA Service Template and deploy the services on out-of-the-box

fog nodes.

4.2 Platform independence

All fog devices are mostly network equipment and gateway devices (Routers, Net-

work Switches, Drones) or conventional computational devices (e.g., Local cloud).

These devices consist of different hardware architectures and operating systems.

Therefore, the first layer of the abstraction of the fog federation frame-

work is to handle platform independence through virtualization. How-

ever, hardware virtualization is costly and resource-intensive. Therefore, it is not

a feasible solution for resource-constrained fog devices. However, all these fog

devices are network devices, and all network devices run on some form of Linux

system. Therefore, these fog devices are running Linux kernels, making container-

ization or OS-level virtualization a feasible solution since containers take kernel

support from the host machine and run in isolation without interfering with the

1https://radon-h2020.eu

https://radon-h2020.eu
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host system or other containers. The FogDEFT framework uses Docker con-

tainers2 to deploy the services on the fog nodes.

4.2.1 Addressing heterogeneity with Docker

Before diving into fog devices, let us understand the problem containerization

technology is trying to solve in the industry.

• In the IT industry, before developing any application, the developers need

to carry out a compatibility check of all the components and services of

the application with underlying hardware, operating systems, libraries, and

dependencies.

• If any component and service need to be modified or updated, then the

developers have to go through the same process of the compatibility check;

otherwise, that change may break the system.

• Any application running in an environment does not guarantee that the

application will run in different environments. E.g. ”The application works

on the developer’s machine but not in production.”

The containerization of the applications or components of the application removes

such problems [25]. These containers are minimally packed with specific software

or source code with dependencies and libraries. These containers run in isolation

on the Docker Engine in a system shown in Figure 4.1. Containers have processes,

services, network interfaces, and mounts almost like virtual machines (feels like),

except they use the same host machine Operating System’s Kernel. So now, each

application component is possible to change or modify independently without af-

fecting the host Operating System or any other application components. These

containers are lightweight and significantly small (mostly a few MegaBytes). They

consume minimal resources while running, so starting a container in a few seconds

is possible. On the other hand, virtual machines take a few GigaBytes of storage

(run a full-fledged Operating System), consume a massive amount of resources,

2https://www.docker.com

https://www.docker.com
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Figure 4.1: System architecture of a Docker host

and take a few minutes to start.

This containerization technology uses kernel features control groups or cgroups

(limits and accounts for the system resources) and namespace (logical isolation

from the host system with scope) to create logical isolation inside a host system.

These containers are based on decade-old technology such as LXC, LXD, and LX-

CFS. Docker uses LXC3. However, setting up such containers is difficult as they

are at a deficient level. Here Docker comes into the picture and provides a user-

friendly high-level tool with many functionalities to make setting up containers

easier for the end-users like us.

We have to recollect some basic Operating System concepts to understand how

containerization works on these systems. Broadly an Operating System has two

components. At the bottom, the Kernel interacts with hardware, and a set of

software (file manager, word processor, compiler, user interface) on top takes the

services from the Kernel via System Calls. The underlying Kernel is the same if

we look at different Linux distributions. The set of software on top of that makes

the different Operating Systems (known as Linux distributions). We mentioned

earlier that the Docker container shares the underlying kernel. So if we manage to

3https://linuxcontainers.org

https://linuxcontainers.org
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have Docker Engine on a Linux system, then any flavor of Linux operating system

containers can run given the container based on the same Linux Kernel.

Interestingly, all the containers of applications we build their base image are

some flavor of Linux distributions (like Debian, Ubuntu, Alpine). If we look at fog

devices, they are mostly network equipment such as Gateway devices, Network

switches, and Routers. All those devices run some flavors of the Linux Operating

System. So if we can have a Docker Engine on fog devices, we can run a Docker

container. Given containers use the same Linux Kernel.

4.2.2 Compatibility over heterogeneous CPU architectures

with Buildx

The conventional way to shift a docker container is as a Docker image. A docker

image is created at the developer end and pushed to the Docker Registry. Then

we can start the container by pulling the Docker image from the Docker Registry

at the deployment end. Usually, the development and deployment sides used to

have the same or different chips based on the same architecture (e.g., Intel Core at

developer and Intel Xeon at production). However, fog devices are heterogeneous

and consist of different processor architectures. An image built on one processor

architecture will not work on another processor architecture. A straightforward

example is Intel Core at the developer end and an ARM-based processor on a

Raspberry Pi.

The solution to this problem is through Docker Multi-architecture Manifests.

Creating Docker images of different CPU architectures of the same application

component to support multiple hardware architectures, Docker automatically pulls

the compatible Docker images from the Docker Registry during deployment. There

are two ways to build such types of images.

1. The old way is to build the image on each architecture natively and then

create a combined manifest file and push it to the Docker registry.
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2. With the new approach, Docker introduces a CLI tool Buildx4 to build multi-

architecture images, combine them in a manifest file and push them to the

Docker registry with a single command. Buildx uses QEMU5 emulation

support from the Linux Kernel to emulate multiple processor architectures

and build multi-architecture images parallelly.

However, there could be some issues, like not every base image supports multi-

architecture. Buildx may fail for many reasons for some uncommon applications,

such as the unavailability of dependency. In that case, the older way is the only

way to go.

4.3 Interoperability

The second essential requirement of fog computing is interoperability which en-

sures seamless cooperation and coordination between services running across fog

nodes. Docker provides the native container orchestration tool called Docker

Swarm6. Since the fog services are running in Docker containers, anything that

runs well in standalone containers runs equally well in swarm mode. Therefore,

this second layer of abstraction handles interoperability with the Docker

swarm and enables seamless coordination and cooperation in the fog

federation. In the following subsections, we illustrate the networking aspect of

standalone Docker containers on a single host, then the networking of swarm mode

operation across multiple host machines.

4.3.1 Docker networking

Let us assume all our fog devices are installed with Docker Engine so we can treat

them as Docker Host. A Bridge Network7 (172.17.0.0/16) will be created on

each Docker Host by default. After starting, all containers get attached to this

Bridge Network. In Figure 4.2, Container 1 and Container 2 get the IP address

4https://docs.docker.com/buildx/working-with-buildx/
5https://www.qemu.org
6https://docs.docker.com/engine/swarm/
7https://docs.docker.com/network/bridge/

https://docs.docker.com/buildx/working-with-buildx/
https://www.qemu.org
https://docs.docker.com/engine/swarm/
https://docs.docker.com/network/bridge/
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Figure 4.2: Networking inside a Docker host

172.17.0.2 and 172.17.0.3, respectively. On a Docker Host, these containers

can talk to each other through their IP addresses of each other. If the Bridge

Network is user-defined, that is, by default DNS enabled, the container names

also can be used to communicate with each other.

However, we are supposed to use many fog devices in fog computing. Then how

will the communication occur between the containers running on different Docker

Hosts? That is where Overlay Network8 comes into the picture. It is a shared

network over all the Docker Hosts. Therefore, we used Container Orchestration

Tool called Docker swarm.

4.3.2 Interoperability over heterogeneous devices with swarm

Docker Swarm is a native clustering engine for or by Docker that creates a pool

of Docker Hosts that virtually acts like a single machine from an external view,

as shown in Figure 4.3. Any service in a standalone Docker container can equally

run well in swarm mode (there is some limitation to be discussed in the upcoming

Subsection 4.3.3). Docker swarm, by default, creates an Ingress Network9. This

Ingress Network is one type of Overlay Network spread across all Docker Hosts

joined in the swarm shown in Figure 4.4. It has an inbuilt load balancer and rout-

ing mesh. The load balancer distributes the traffic across the multiple replicas of

8https://docs.docker.com/network/overlay/
9https://docs.docker.com/engine/swarm/ingress/

https://docs.docker.com/network/overlay/
https://docs.docker.com/engine/swarm/ingress/
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Figure 4.3: Interoperability with Docker swarm

Figure 4.4: Networking across multiple Docker hosts in (Swarm mode)

a service running in different Docker Hosts. The routing mesh automatically redi-

rects the traffic to that specific container where the service is running. Therefore,

the service becomes available through all the IP addresses of fog devices. So all the

fog devices can use any service running in the swarm of fog nodes without knowing

the actual device where that container is running. This communication is private

traffic inside swarm. With port mapping service made available to the external

devices through all the IP addresses of fog nodes. The port mapping is similar to

the bind-mount in the file system. The container’s internal port is mapped with

one host port. Any traffic coming to that Docker Host port is redirected into that

mapped container’s internal port. In Figure 4.4, HOST 1, 2, and 3’s port 8080 of

Docker Host are mapped with the docker service port 8080. Any traffic coming to



CHAPTER 4. THE FRAMEWORK FOGDEFT 27

ports 8080 of HOST 1, 2, and 3 is redirected to containers running inside HOST

1 and HOST 2. The HOST 3 is not running the container, but still, service is

available through 192.168.0.102:8080 because of the routing mesh.

4.3.3 Addressing different capabilities over heterogeneous

hardware

Here capability is not about the processing, but about the capability of sensing

and actuation. All fog devices included in the fog federation are not having the

hardware support to interface a sensor and actuators. Even this issue is not about

the placement of the container. Docker swarm offers functionality (labels and

constraints) to specify the suitable Docker Host to deploy a container. The prob-

lem is with containerizing the sensing and actuation components. The container

is OS-level virtualization technology to create logical isolation from the platform.

However, sensing and actuation required direct platform and hardware interaction.

Therefore, it is a conflict of interest. For the processing and communication (web

server or message broker) components of an application, platform independence is

achievable. However, we are still heavily dependent on the hardware platform for

sensing and actuation.

Here are three issues we came across while experimenting:

1. Secure computing mode is a Kernel feature that restricts the actions inside

a container. By default, out of 300+ System Calls, 44 System Calls are

disabled10.

2. We have to interact with the hardware directly for sensing and actuation,

but the container is an isolated environment.

3. Installation of packages such as ‘RPi.GPIO’ inside a container fails be-

cause the base image is regular Linux distributions (e.g. ubuntu:20.04,

debian:buster-slim). So, the platform is unsupported.

We figured out these two ways to dynamically deploy a sensing and actuation

service on a Raspberry Pi.

10https://docs.docker.com/engine/security/seccomp/

https://docs.docker.com/engine/security/seccomp/
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Privileged container with bind mounts

These three issues of containerizing sensing and actuation are possible to address

as follows.

1. All Docker containers are unprivileged by default, limiting the host machine’s

Kernel features and System Calls. Docker enables access to entire Kernel

features on a host for a privileged container. A privileged container can load

a Kernel module and function as same as a process natively running in a

host machine.

2. Linux treats everything as a file. The path to the Raspberry Pi’s GPIO

pin is ‘‘/sys/class/gpio’’. So we bind-mounted11 the ‘/sys’ directory

of the container to the ‘/sys’ directory of the Raspberry Pi. Bind mount

means the container will mount one directory from the host machine, so

here containers ‘/sys’ directory is mapped with Raspberry Pi’s ‘/sys’

directory.

3. Similarly, All the libraries and packages are installed on the Raspberry Pi

natively. That directory is bind-mounted inside the container (‘/usr’ di-

rectory is bind-mounted with the container’s ‘/usr’ directory).

After these three steps, executing a script inside a container for sensing and actu-

ation becomes possible shown in Figure 4.5.

However, there are some limitations in Docker swarm. We get all the features

in a standalone container; a few are not available in Swarm mode. The privileged

container is one such feature that is not available in Docker swarm mode yet. So,

the sensor and actuation service deployment must be as a standalone container

shown as green boxes inside HOST 1 and 2 in Figure 4.5. These standalone

containers can communicate with other services through the host IP address or

any IP address of the fog node inside Docker swarm. The routing mesh will

redirect the traffic to the correct container. This communication is acting as

11https://docs.docker.com/storage/bind-mounts/

https://docs.docker.com/storage/bind-mounts/
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Figure 4.5: Privileged containers with bind-mount on a Docker host

an external device communicating from outside with the services running in the

swarm. Otherwise, we can create another Overlay Network and attach the Docker

services running and standalone container.

Native background service

In the containerization approach, the container is just providing the source code.

Almost everything else is entirely dependent on the platform. This is unnecessarily

adding up overhead on the fog devices. Therefore, it is better to execute natively

on the host machine as a background service. Therefore, instead of starting a

container, a background service of sensing or actuation will be created and started

on the host machine Operating System during deployment shown in Figure 4.6.

This communication with the services running in the swarm is possible through

any IP address of the hosts in the swarm cluster exactly like the previous method.

Our experiment tells us that this mechanism is much more robust and resource-

efficient than the containerization process discussed in the previous Subsection

4.3.3 (Privileged container with bind mounts).

4.4 Standardization

To enable the portability of a fog application from one fog federation to another

requires some standardization. It is a similar type of problem faced by the cloud
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Figure 4.6: Background service for sensing and actuation

communities while porting a composite cloud application from one cloud service

provider to another one. OASIS addressed the problem with Topology and Or-

chestration Specification for Cloud Applications (TOSCA), which stan-

dardizes a composite cloud application description. This third layer of abstrac-

tion provides a TOSCA extension for modeling fog applications. There-

fore, this section briefly discusses TOSCA backgrounds, followed by the extension

(TOSCA new Nodes and Relationship types) for describing fog applications.

4.4.1 TOSCA background

TOSCA is a standardized specification to describe software applications to run

in the cloud. TOSCA describes not only the application, but also describes the

dependency and supporting infrastructure of an application in the cloud. These

end-to-end descriptions (from base infrastructure, networks, and software to the

running composite application) make TOSCA vendor-independent, and interop-

erability and portability enabled service definitions for the cloud applications.

TOSCA has two basic building blocks: Nodes and Relationships. Nodes are the

infrastructure (e.g., servers, networks, virtual machines) or software components

(e.g., services and runtime environments). Relationships describe the relationship
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between nodes (e.g., a virtual machine hosts a web server). In a TOSCA Service

Template (typically a YAML file), we create a Topology Template. The Topology

Template consists of Node Templates and Relationship Templates describing the

composite application’s blueprint.

Each Node and Relationship Templates has a Node Type and Relationship

Type. Suppose we relate TOSCA with object-oriented programming concepts.

In that case, Node Types or Relationship Types are the classes, and Node and

Relationships are the objects. TOSCA Simple Profile v1.312 comes with some

normative Node Types (e.g., Compute, SoftwareComponent, WebServer, WebAp-

plication, DBMS, Database, ObjectStorage), Relationship Types (e.g., HostedOn,

ConnectsTo, DependsOn, AttachesTo, and RoutesTo), Capabilities Types, Data

Types (e.g., string, integer, list, dictionary). For modeling, user-developed appli-

cations custom Node Types, Relationship Types, and Capability Types are created

by extending available Normative Types. Each Node and Relationship Type can

have a set of attributes, properties, requirements, capabilities, and implementa-

tion. In the implementation, Nodes interface with the system and execute im-

plementation scripts (Shell scripts, Python scripts, or Ansible Playbook scripts),

based on the orchestration platform13. A Node’s lifecycle is maintained with as-

sociated implementation scripts with interface operations: create, configure,

start, stop, and delete.

It is important to note that TOSCA is just a standard. The only thing

TOSCA gives is a string for the implementation, and it is up to the orchestrator

to interpret that string and make sense of it.

12https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/

TOSCA-Simple-Profile-YAML-v1.3.html
13https://wiki.oasis-open.org/tosca/TOSCA-implementations

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://wiki.oasis-open.org/tosca/TOSCA-implementations
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Table 4.1: List of node types for fog applications

Nodes Types Description

docker containers Pull a docker-compose.yaml file from the given URL
and deploy/undeploy on the host fog node

docker services Pull a docker-compose.yaml file from the given URL
and deploy/undeploy on the Docker swarm from Swarm
Leader node

swarm leader Initiates Docker swarm on the host node and the node
becomes Swarm manager

swarm worker Host node joins the Docker swarm as worker node

system service Pulls scripts and configuration files from the given URL
and creates a background service with systemctl com-
mand

Table 4.2: List of relationship types for fog applications

Relationship Types Description

token transfer Relationship (dependency) between Swarm Leader and
Swarm Worker

4.4.2 TOSCA extension for fog application

The Radon project14 and xOpera examples15 repository (open-source) consist

of a list of TOSCA node types that are publicly available. However, These two

projects and the development of TOSCA are for the cloud platforms. Therefore,

these node types are for the deployment of pure cloud applications. Hence, signif-

icant modifications are required to create relevant node types for deployment of

IoT applications on fog nodes. In general, there will be five generic Nodes16 and

one Relationship17 type required for user-defined applications. These Nodes and

Relationship types are listed in the Table 4.1 and table 4.2 respectively.

14https://github.com/radon-h2020
15https://github.com/xlab-si/xopera-examples.git
16https://github.com/cloud-and-smart-labs/fog-service-orchestration/tree/

swarm/orchestrator/tosca/nodetypes
17https://github.com/cloud-and-smart-labs/fog-service-orchestration/tree/

swarm/orchestrator/tosca/relationshiptypes

https://github.com/radon-h2020
https://github.com/xlab-si/xopera-examples.git
https://github.com/cloud-and-smart-labs/fog-service-orchestration/tree/swarm/orchestrator/tosca/nodetypes
https://github.com/cloud-and-smart-labs/fog-service-orchestration/tree/swarm/orchestrator/tosca/nodetypes
https://github.com/cloud-and-smart-labs/fog-service-orchestration/tree/swarm/orchestrator/tosca/relationshiptypes
https://github.com/cloud-and-smart-labs/fog-service-orchestration/tree/swarm/orchestrator/tosca/relationshiptypes
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Swarm Leader

The node initiates the Docker swarm and works as the swarm manager. The

attributes (Listing 4.1, line 4-13) specify the joining token and advertise address

of the swarm. Swarm Leader has the requirement of type Compute, so it must

be hosted on a Compute type node (line 15). Furthermore, the node can host

any positive number (line 21) of Docker services (theoretically). In interfaces,

two operations (line 34-35), create and delete, are implemented with Ansible

Playbooks. The orchestrator will invoke these Ansible Playbook scrips during

deployment and undeployment, respectively. Inside the inputs section (line 26-

32), the host node’s IP address is concatenated with port ‘2377’ will be available

as an input inside Ansible Playbooks. Now, it is up to tasks written into Ansible

Playbooks to make the deployment and undeployment happen on the host node.

Swarm Worker

The node joins the Docker swarm as a worker node. Must be hosted on the Com-

pute type node and depend on the Swarm Leader type node specified by the Token

Transfer relationship type (Listing 4.2).

Swarm Leader and Swarm Worker nodes have a similar capability to host

Docker Services. In interfaces, create and delete operations are implemented

with three inputs: worker join token (to join the Docker swarm), ip address

(Host IP address), and join addr port (Docker swarm joining address from Swarm

Leader) (Listing 4.3).

Docker Service

Docker Container

System Service

These three node types are more or less the same. Docker Service and Docker

Container pull a ’docker-compose.yaml’ file from the online repository. The

system service pulls the scripts and service configuration files for background ser-
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1 node_types:

2 fog.docker.SwarmLeader:

3 derived_from: tosca.nodes.SoftwareComponent

4 attributes:

5 manager_token:

6 type: string

7 default: undefined

8 worker_token:

9 type: string

10 default: undefined

11 advertise_addr:

12 type: string

13 default: undefined

14 requirements:

15 - host:

16 capability: tosca.capabilities.Compute

17 relationship: tosca.relationships.HostedOn

18 capabilities:

19 host:

20 type: tosca.capabilities.Container

21 occurrences: [0, UNBOUNDED]

22 valid_source_types: [fog.docker.Services]

23 interfaces:

24 Standard:

25 type: tosca.interfaces.node.lifecycle.Standard

26 inputs:

27 advertise_addr:

28 value:

29 concat:

30 - get_attribute:[SELF, host, private_address]

31 - ":2377"

32 type: string

33 operations:

34 create: playbooks/create.yaml

35 delete: playbooks/delete.yaml

Listing 4.1: Swarm Leader node type

1 requirements:

2 - leader:

3 capability: tosca.capabilities.Node

4 relationship: fog.docker.swarm.relationships.TokenTransfer

5 - host:

6 capability: tosca.capabilities.Compute

7 relationship: tosca.relationships.HostedOn

Listing 4.2: Requirements of Swarm Worker node types
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1 interfaces:

2 Standard:

3 type: tosca.interfaces.node.lifecycle.Standard

4 inputs:

5 worker_join_token:

6 value:

7 get_attribute: [SELF, leader, worker_token]

8 type: string

9 ip_addr:

10 value:

11 get_attribute: [SELF, host, private_address]

12 type: string

13 join_addr_port:

14 value:

15 get_attribute: [SELF, leader, advertise_addr]

16 type: string

Listing 4.3: Interfaces of Swarm Worker node types

1 requirements:

2 - host:

3 capability: tosca.capabilities.Container

4 relationship: tosca.relationships.HostedOn

5 occurrences: [1, 1]

6 - dependency:

7 capability: tosca.capabilities.Container

8 relationship: tosca.relationships.DependsOn

9 occurrences: [0, UNBOUNDED]

Listing 4.4: Requirements of Docker Service node type

vice creation. Then again, it is up to the implementation in the Ansible Playbook

to make the container or service creation happen on the host system. The only

difference is the requirement. Docker Service node type deploys the service in

swarm mode, so has the dependency on the Swarm Leader nodes and all Swarm

Worker nodes inside the swarm (Listing 4.4).

Whereas background services and standalone containers run on a single node,

the Compute node is the only requirement. Therefore, in Listing 4.4, the require-

ment of a ’host’ is sufficient (line 2-5). The dependency section is not required

for Docker Container and System Service.
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1 operations:

2 pre_configure_source:

3 inputs:

4 manager_token:

5 value: { get_attribute: [TARGET, manager_token] }

6 type: string

7 worker_token:

8 value: { get_attribute: [TARGET, worker_token] }

9 type: string

10 join_addr_port:

11 value: {get_attribute: [TARGET, advertise_addr]}

12 type: string

13 implementation: playbooks/pre_configure_source.yaml

Listing 4.5: Interfaces of Token transfer relationship type

Token transfer

The relationship type specifies the relationship between Swarm Leader and Swarm

Worker (Listing 4.5). Which is derived from normative ’dependOn’ Relationships

type. The relationship sets the attributes joining tokens and advertised address of

Swarm Leader node with ’pre configure source’ interface operation (line 13).

These are the generic and common types of TOSCA node types. Now, based

on the different IoT Application requirements, other types of components may

arrive. In that case, these node and relationship types have to be created like the

way these five nodes and one relationship type are created. With these Nodes and

Relationship types, fog applications can be designed and deployed by a TOSCA-

compliant orchestrator. It is important to note that all these operations, including

creating Docker Swarm, joining all the fog devices to the swarm cluster, deploying

the services, and starting privileged containers or background services, will be

wholly automatic and handled by the FogDEFT framework without

any human intervention. Deployment or undeployment of fog services will

take place by single command or a button click to provide the highest level

of convenience. Chapter 6 will demonstrate such deployment with two different

case studies of fog applications.
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4.5 Summary

The FogDEFT framework uses three-layer abstractions to deal with platform in-

dependence, interoperability, and portability. The first layer of abstraction incor-

porates the OS-level virtualization to run the services on the fog nodes. Since

hardware virtualization is resource-intensive, Docker containers are critical for

deploying services on resource-constrained fog nodes. The second layer of abstrac-

tion uses Docker swarm, a container orchestration tool by Docker, to establish the

interoperability of services through the Overlay Network (a kind of shared net-

work across multiple fog nodes). The third and last layer of abstraction extends

TOSCA standards and offers generic Nodes and Relationship types to describe the

blueprint of a fog application through a TOSCA Service Template. The service

becomes portable because the orchestrator can deploy these services to any fog

infrastructure given a TOSCA Service Template.



Chapter 5

Dynamic deployment on fog

The deployment of these services on the fog nodes requires TOSCA Compliant or-

chestrators. TOSCA Compliant Orchestrator consists of a TOSCA processor, an

engine or tool capable of parsing, validating, and interpreting the Topology Tem-

plate. Therefore, TOSCA Compliant Orchestrator interprets a TOSCA Service

Template to instantiate, deploy, and manage the application. TOSCA Compliant

Orchestrator is also called an orchestration engine. The FogDEFT Framework

adopted the xOpera1 orchestrator to deploy the services on the fog nodes.

5.1 xOpera Orchestrator

The xOpera is a lightweight OASIS TOSCA compliant orchestrator (currently

with TOSCA Simple Profile in YAML v1.3) that fits resource-constrained fog

devices. It uses the Ansible Automation Tool to implement the TOSCA stan-

dard. Hence, all the interface operations are performed with Ansible Playbooks.

Therefore, all the Nodes and Relationship types listed in Tables 4.1 and 4.2 have

associated Ansible Playbook scripts (create.yaml, delete.yaml) for interface

operations, as shown in Listing 5.6 (line 14-15). The xOpera understands TOSCA

Service Template and executes Ansible Playbooks in a particular order based on

the node’s dependency to make deployment and undeployment happen. These

Ansible Playbooks execute on the orchestrator (can be a remote machine) and

1https://xlab-si.github.io/xopera-docs/02-cli.html

38

https://xlab-si.github.io/xopera-docs/02-cli.html
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1 interfaces:

2 Standard:

3 type: tosca.interfaces.node.lifecycle.Standard

4

5 inputs:

6 name:

7 value: { get_property: [SELF, name] }

8 type: string

9 url:

10 value: { get_property: [SELF, url] }

11 type: string

12

13 operations:

14 create: playbooks/create.yaml

15 delete: playbooks/delete.yaml

Listing 5.6: TOSCA node’s interface operations

Figure 5.1: Fog service orchestration process

connect fog nodes to push small programs called ansible modules (Figure 5.1).

This connection is over Secure Shell (SSH) by default. Ansible then executes

these modules and then removes them after completion. Hence, the service de-

ployment functions out of the box on the fly. The xOpera orchestrator and Ansible

both heavily rely on SSH infrastructure. The machine where the orchestrator is

running must be able to access all the fog devices through the SSH.

5.2 Dynamic service deployment

The fog service deployment with the FogDEFT framework requires a two-step

procedure modeling the application followed by orchestration.
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5.2.1 Modeling

Before deployment, the fog service’s TOSCA Service Template needs to be cre-

ated using the Nodes (Table 4.1) and Relationship (Table 4.2) Types provided by

the FogDEFT framework discussed in the previous chapter. The file structure of

the entire package is shown in Figure 5.2. In that file structure ’service.yaml’

file is the TOSCA Service Template for fog application consisting of the topol-

ogy of all the Node Templates describing the end-to-end architecture of the ap-

plication. Furthermore, the ’inputs.yaml’ file contains the list of the IP ad-

dress of fog nodes (just changing these IP addresses will allow the deployment

on some other fog nodes inside another network), URI or repository links of

’docker-compose.yaml’ files supposed to be deployed on specific fog nodes or

in swarm mode. The basic thumb rule is that hardware-independent services like

message broker and webserver should be deployed in swarm mode, and hardware-

dependent services should be deployed in standalone mode or as system services.

The next chapter will illustrate TOSCA Service Template creation in detail with

case studies.

5.2.2 Orchestration

The FogDEFT framework adopted the xOpera orchestrator to deploy the services

on the fog nodes discussed in Section 5.1. The xOpera Orchestration tool is

available/distributed as a Python package2. Assuming the organization of the fog

nodes like Figure 5.3, where the personal computer in the middle is running the

orchestrator and remotely deploying fog service to all other nodes in that network.

To deploy the service with xOpera following steps3 need to be followed.

Environment Setup

The xOpera and Ansible both use SSH for the deployment of service. Therefore

the orchestrator machine must be able to login into all the fog devices through

2https://pypi.org/project/opera/
3https://github.com/cloud-and-smart-labs/fog-service-orchestration/blob/

swarm/README.md

https://pypi.org/project/opera/
https://github.com/cloud-and-smart-labs/fog-service-orchestration/blob/swarm/README.md
https://github.com/cloud-and-smart-labs/fog-service-orchestration/blob/swarm/README.md
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Figure 5.2: Files organization of the framework

SSH without a password4.

1. Generate SSH key pair.

$ ssh-keygen

2. Copy the public key to all fog nodes.

$ ssh-copy-id root@192.168.0.XXX

3. Install xOpera though package installer for Python (PIP).

4Otherwise, this will ask for the password for each fog node for each service to be deployed.
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Figure 5.3: Fog devices organization in local area network

$ pip install opera==0.6.8

4. By default xOpera login as ’centos’ username. To change the login user-

name set the ’OPERA SSH USER’ environment variable to the fog nodes user-

name.

$ export OPERA SSH USER=root

Service deployment/undeployment

The commands that need to be executed to validate, deploy, and undeploy

service through the xOpera orchestration is listed below.

• Validate TOSCA Service Templates before deployment.

$ opera validate -e -i inputs.yaml service.yaml

-e: executors (e.g. Ansible Playbooks) behind them

-i: Input file path

• Deploy TOSCA Service Templates.

$ opera deploy -w 2 -i inputs.yaml service.yaml

-i: Input file path

-w: Number of concurrent threads (default 1)
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At the time of deployment, the xOpera orchestrator executes Ansible Play-

book scripts in a specific order to make this deployment happen discussed

in the previous section. In the case of a single deployment thread (-w 1 or

empty), this specific order is one of the topological sorts of the applications

services topology defined in the topology template inside TOSCA Service

Templates. That order depends entirely on the node templates dependency

for multiple concurrent deployment threads.

• Undeploy TOSCA Service Templates.

$ opera undeploy -w 2

-w: Number of concurrent threads (default 1)

Similarly, for the undeployment, the order follows the transpose graph of the

application topology in the case of a single undeployment thread.

Resource utilization and performance

The development of TOSCA standards and Orchestrators is targeted for cloud

instances. The cloud gives an illusion of an infinite amount of resources. However,

we are using it to orchestrate services on fog devices. Fog devices are resource-

constrained devices. So resource consumption could be an issue for service deploy-

ment on fog devices. For resource utilization and performance analysis, the fog

service orchestration with xOpera orchestrator of the TOSCA Service Template

consists of a ten node template deployed on three fog nodes (two Raspberry Pi 4

and one Raspberry Pi 3). The resource consumption (CPU and memory usage)

and time taken for the deployment followed by undeployment are observed under

the different number of concurrent deployments threads (Workers) and listed in

Table 5.1.

Importantly, this data is a pure orchestrator’s resource utilization on a typical

personal computer (laptop). While successively deploying and then undeploying

the service. This resource consumption does not include any other processes or
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applications we deploy. We ensure this through the custom Python script5 that

explicitly picks the resource consumption of the processes responsible for the or-

chestration. Each row in the Table shows deployment followed by deployment

time, CPU, and memory utilization corresponding to the number of concurrent

deployment threads employed. Therefore, in the case of a single thread, CPU

and memory usage is significantly low but takes the longest time because the de-

ployment order of nodes is sequential (order of topological sort). However, when

more concurrent deployment threads are employed, deployment and undeploy-

ment times decrease significantly, and resource consumption increases drastically

(peaks in a CPU and memory usage graph show that), mostly while deploying

independent nodes parallelly.

Deployment of the service for the first time can take more time for image

pulling from the Docker registry and cloning the code from the repository. The

second deployment of the same service will take significantly less time because of

cached images on the fog devices.

5.3 Orchestration behind NAT

So far, we have discussed service deployment on-the-fly up to the previous subsec-

tion. The core mechanism is that all the fog nodes are running SSH servers. The

Orchestrator connects to each node through the SSH. However, the “Out of the

Box” core idea is that fog devices are not using exceptional configurations/services.

Therefore, standard broadband service connects these devices from the organiza-

tion/home network to the internet. There are high chances that the Internet

Service Provider (ISP) has kept behind the Network Address Translation (NAT)

due to the effective use of public IP addresses. It could be multiple layers of NAT

in the case of a big organization or urban area. Hence the dynamic deployment

is limited to the local network, shown in the organization of the fog federation

Figure 5.3. With this, the scope of work gets stuck into a local area, probably at

5https://github.com/cloud-and-smart-labs/system-setup-util/tree/main/

sys-monitor

https://github.com/cloud-and-smart-labs/system-setup-util/tree/main/sys-monitor
https://github.com/cloud-and-smart-labs/system-setup-util/tree/main/sys-monitor
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Table 5.1: Orchestrator resource utilization and performance

Number
of

Workers
Time (s) CPU (%) Memory (MB)

1

Deploy
real 139.90
usr 6.32
sys 1.60
Undeploy
real 67.90
user 3.62
sys 0.90

2

Deploy
real 106.24
us 6.75
sys 1.77
Undeploy
real 57.74
usr 4.10
sys 0.91

3

Deploy
real 91.57
user 7.56
sys 1.88
Undeploy
real 37.73
user 4.43
sys 1.00

most one site.

An external coordinator and a modified orchestration tool can bridge this gap.

To support this type of deployment, we developed

Orchestration Manager (external coordinator)

This module is an interactive prompt like a command-line interface running on

a static/public IP address. All the orchestrators connect to this manager and

act as slaves/workers. The Orchestration Manager broadcasts the commands and

configuration. The configuration consists of the name of TOSCA Node types and

docker-compose files URI.
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Figure 5.4: Deployment of services behind the NAT

Orchestrator (modified orchestration tool)

This Orchestrator is a package of

• xOpera orchestrator

• TOSCA Node types

• An agent to connect the Orchestration Manager and TOSCA Service Tem-

plate generator

The Orchestrator can also work in standalone mode like a typical xOpera orches-

trator. Furthermore, it acts as a slave/worker when connected to the Orchestration

Manager. In connected mode when it receives a configuration from Orchestration

Manager, it dynamically generates a TOSCA Service Template for that local net-

work behind the NAT.

In our experiment, one of the fog devices runs the Orchestrator as a Docker con-



CHAPTER 5. DYNAMIC DEPLOYMENT ON FOG 47

tainer behind each NAT. The Orchestration manager runs on a Microsoft Azure6

cloud instance as Docker container. When the respective configuration/command

is received, all the Orchestrators dynamically generate the TOSCA Service Tem-

plate based on the number of fog devices available there and deploy/undeploy on

all the fog devices behind that NAT shown in Figure 5.4.

5.4 Summary

The FogDEFT framework adopts the xOpera orchestrator. xOpera orchestrator

uses Ansible Automation Tool for the implementation of the TOSCA standard.

Therefore, all the implementation scripts are written in Ansible Playbooks for all

Node and Relationship types. At the time of deployment/undeployment, these

scripts get executed in a specific order based on node templates dependency, and

the deployment of these services takes place on fog nodes. For deployment of any

user-defined fog services, first, the TOSCA Service Template needs to be created,

and then the Service Temple will be given to xOpera orchestration, which will de-

ploy/undeploy these services on a set of fog nodes with a single command. xOpera

being a lightweight orchestrator, uses minimal resources in a single-threaded de-

ployment. However, it gives the option to employ multiple concurrent threads to

deploy independent nodes parallelly to speed up the deployment and undeploy-

ment process with the cost of higher resource consumption. If the fog nodes are

behind the NAT, then Orchestration Manager and modified Orchestrator can be

used to deploy services behind the NAT.

6https://azure.microsoft.com/en-in/services/virtual-machines/

https://azure.microsoft.com/en-in/services/virtual-machines/
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Case studies on FogDEFT

The previous two chapters discussed the abstraction layer, technology, and service

deployment with the FogDEFT framework. This chapter will take two applica-

tions, Remote LED service and Climate Control system, as a case study to eval-

uate the FogDEFT framework. We first design each application’s hardware and

software architecture and then create a TOSCA Service Template to deploy the

services dynamically. Furthermore, we will monitor these fog devices’ performance

and resource utilization while the services are getting deployed.

6.1 Remote LED

This section demonstrates the dynamic deployment with a simple IoT application

with the FogDEFT framework. This application serves a webpage. With a button

click from a web page, some LEDs get on or off.

6.1.1 System design

The design of an IoT-driven system consists of two parts: hardware and software.

Hardware design

The hardware setup for this application uses two Raspberry Pi 4 and one Rasp-

berry Pi 3. Each of them has one LED connected through GPIO pin 18.

48
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Software design

Five different Node Templates are creating the blueprint of this application:

• Compute Node: all the fog devices

• Swarm Leader: Docker Swarm manager

• Swarm Worker: Docker Swarm workers

• Docker Services: Hosts an Nginx web server, and serves the webpage and

Python WebSocket server from where the actuation signal is forwarded to

the actuators.

• Docker Containers/System Service: LED actuator: turn LED on/off

The visual blueprint of the structure of this application’s TOSCA Service Tem-

plate would be like Figure 6.1. The Fog nodes are the fog devices. On top of that,

Swarm Leader and Swarm Workers are hosted. Swarm Workers depend on the

Swarm Leader. Docker Service is hosted on the Swarm Leader with dependency

on all Swarm Workers. Two Docker Services, Python Websocket Server and Nginx

web server run as Docker Stack on the Docker Swarm (Swarm Leader and Swarm

Workers). However, the Nginx web server depends on the Python WebSocket

server mentioned in the ’docker-compose.yaml’ file. So Nginx webserver service

will be deployed after deploying the Python WebSocket server. Therefore, LED

actuators are hosted on each fog node but depend on Docker Services. So LED

Actuators will be deployed after the Docker Services is ready.

6.1.2 TOSCA Service Template

The TOSCA Service Template1 of the application contains the Topology Template

given in Listing 6.7, that describes the application’s structure given in the previous

section Topology model shown in Figure 6.1. The Node Template section defines

(line 2-48) all application components and their properties and dependencies.

1https://github.com/cloud-and-smart-labs/fog-service-orchestration/blob/

swarm/orchestrator/tosca/service-2.yaml

https://github.com/cloud-and-smart-labs/fog-service-orchestration/blob/swarm/orchestrator/tosca/service-2.yaml
https://github.com/cloud-and-smart-labs/fog-service-orchestration/blob/swarm/orchestrator/tosca/service-2.yaml
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1 topology_template:

2 node_templates:

3 fog-node-1:

4 type: tosca.nodes.Compute

5 attributes:

6 private_address: 192.168.0.166

7 public_address: 192.168.0.166

8 fog-node-2:

9 ...

10 fog-node-3:

11 ...

12

13 docker-swarm-leader:

14 type: fog.docker.SwarmLeader

15 requirements:

16 - host: fog-node-1

17

18 docker-swarm-worker-1:

19 type: fog.docker.SwarmWorker

20 requirements:

21 - host: fog-node-2

22 - leader: docker-swarm-leader

23 docker-swarm-worker-2:

24 ...

25

26 docker-service-1:

27 type: fog.docker.Services

28 properties:

29 name: { get_input: docker_service_name }

30 url: { get_input: docker_service_url }

31 requirements:

32 - host: docker-swarm-leader

33 - dependency: docker-swarm-worker-1

34 - dependency: docker-swarm-worker-2

35

36 privileged_container-1:

37 type: fog.docker.Containers

38 properties:

39 name: { get_input: docker_compose_name }

40 url: { get_input: docker_compose_url }

41 packages: { get_input: packages }

42 requirements:

43 - host: fog-node-1

44 - dependency: docker-service-1

45 privileged_container-2:

46 ...

47 privileged_container-3:

48 ...

Listing 6.7: TOSCA Service Template of the application
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Figure 6.1: Topology or Blueprint of the application

1 system-service-1:

2 type: fog.system.Service

3 properties:

4 name: { get_input: system_service_name }

5 script_url: {get_input: system_service_script_url}

6 service_url: {get_input: system_service_service_url}

7 packages: { get_input: packages }

8 requirements:

9 - host: fog-node-1

10 - dependency: docker-service-1

Listing 6.8: System Service node template

The Privileged Containers Node Templates need to be replaced by the System

Service Node Templates to deploy the actuation as background services instead of

standalone containers shown in Listing 6.8.

For the inputs, we have a separate file (‘inputs.yaml’) to add the required

inputs repository or nodes IP addresses. The file structure of the entire package

(node, relationship types, service template, inputs, and Ansible Playbooks) of an

application is shown in previous Chapter Figure 5.2.
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Figure 6.2: Deployment sequence with multiple workers (parallel threads)

6.1.3 Results and discussion

Three concurrent deployment threads were employed during the orchestration as

the experiment was going on three fog nodes as illustrated in section Topology

model Figure 6.1. The orchestrator, based on the dependencies, parallelly deploys

the nodes on the fog devices as shown in Figure 6.2. The fog nodes are first created

parallelly in the deployment sequence, followed by the Docker Swarm Leader. All

other stuff waited until the completion of the Docker Swarm Leader node, because

all other nodes directly or indirectly had some dependency on the Docker Swarm

Leader node. Then two Swarm Workers are created parallelly, followed by Docker

Services that had the dependency on the entire Docker Swarm. After deploying

the Docker Service, the orchestrator simultaneously deploys all three Privileged

Containers.

Similarly, for the undeployment of the service, the orchestrator undeployment

sequence is precisely the reverse order of the node’s dependency in the Topology

Template.

The resource utilization details of the fog nodes where the application services

are getting deployed are shown in Table 6.1. These results show that irrespective

of the devices and their role (Leader/worker) in fog federation, CPU and memory

usage are more or less the same and favorable to entitle as a lightweight fog

deployment framework.
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Table 6.1: Fog nodes resource utilization and performance (remote-LED)

Device CPU (%) Memory (MB)

Raspberry Pi 3
Model B

(As Worker node)

Raspberry Pi 4
(As Worker node)

Raspberry Pi 4
(As Leader node)

6.2 Climate Control system

This section demonstrates the dynamic deployment by realizing a case study of

the climate control system of the convention center. A convention center inside a

city usually hosts diverse events like conferences, exhibitions, and cultural events.

Probably a storage area for off times or a hospital isolation ward in times of

pandemic, and the past two years made it clear. Therefore, all these events in dif-

ferent seasons require different climate conditions inside a convention center. For

example, a cultural event needs different lighting requirements and intensity than

an international conference. Even those requirements will differ from daytime to

nighttime as well. The weather and season will play a significant role in climate

control. A summer event requires lower temperature, a winter event higher tem-

perature, and a monsoon needs lower humidity and temperature. The number of
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Table 6.2: IoT device list for climate control system

Device Name
Processor

Architecture
Memory
Size

Operating
System

Arduino Uno
Microcontroller
ATmega328P

32 KB -

Arduino Nano 33
BLE Sense

ARM Cortex-M4 1 MB -

Raspberry Pi 4 ARMv7l 32-Bit 4 GB
Raspberry Pi

OS 10

Raspberry Pi 4 ARMv8 64-Bit 4GB
Raspberry Pi

OS 11

Workstation
Intel Xeon W-2145

3.70GHz × 16
32 GB Ubuntu 20.04

guests is also a factor in controlling temperature and humidity. Altogether, the

automation of these climate control systems is one of the ideal scenarios for the

dynamic deployment of fog services (A similar idea can be used in greenhouse

farming as well).

6.2.1 System design

The design of an IoT-driven system consists of two parts: hardware and soft-

ware. The section described the requirement of a generic hardware platform with

sensors and actuators capable of hosting some fog services. The following sub-

sections illustrate the hardware prototype followed by the software architecture

with FogDEFT framework on the hardware prototype, creating a fog federation

for deploying the case study services

Hardware design

The prototype for the demonstration of dynamic deployment of fog services uses

a handful of IoT devices listed in Table 6.2.

Figure 6.3 shows the illustration of the hardware design of the prototype. Two

Arduino Nano 33 BLE Sense boards are placed outside the convention center and

connected to a Raspberry Pi 4 through serial ports (USB). These two Arduino

boards have inbuilt sensors (temperature, humidity, light, barometric pressure,
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Figure 6.3: Hardware design

proximity, and microphone) to sense the outside environment. Another Arduino

Uno is connected to four actuators (servo motors) through Pulse Width Modula-

tion (PWM) pins and one Raspberry Pi 4 through a serial port. All the Raspberry

Pis and the Workstation inside the control room are connected to the network and

have internet connectivity.

Software design

After designing the generic hardware platform, it is up to the job of the software

to create the platform for fog federation with these on-premises gateway devices

(Raspberry Pis). The devices listed in Table 6.3 come under two different cate-

gories.

First, Arduinos come under the category of microcontrollers. We have three

Arduinos here of two different categories: Nano 33 BLE Sense and Uno. The first

one is for sensing the outside environments. Therefore, these two Arduino were

programmed to collect the sensor dataset and send it through the serial port of

that connected Raspberry Pi 4. The second one is for actuation to control the

climate inside the convention center. Therefore, this is programmed to perform

actuation on connected actuators. These actuation parameters are retrieved from
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Figure 6.4: Service design blueprint

the serial port connected to the Raspberry Pi 4.

Second, Raspberry Pis and the system inside the control room come under

the microprocessor category. Unlike Arduinos, these are typical computers with

Operating Systems that can load programs and execute processes and services.

Therefore, these devices will be treated as fog nodes. Here, the FogDEFT frame-

work comes into the picture to ease the development and deployment of fog services

on the fog nodes.

The design of the prototype in Figure 6.3 consists of two fog nodes (Raspberry

Pi 4). The fog services to maintain the climate will be deployed on these two

fog nodes. Here, Figure 6.4 illustrates the topology design of fog services to be

deployed on the fog nodes inside convention centers to IoT-driven climate control

systems. In this illustration, boxes are nodes, and directed edges are relationships

between nodes, as discussed in Section 4.4.

The bottom two gray nodes represent the fog nodes. The green node in the
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middle represents Docker Services (Message broker and web server to show the

sensor data and state) running in the swarm mode (interservice dependencies are

mentioned in the docker-compose file). This Docker Service node is hosted and

depends on two blue nodes, Swarm Leader and Swarm Worker, respectively. The

edge between two blue nodes is their relationship, and both are hosted on one fog

node, respectively. The remaining two yellow and purple nodes are Publisher and

Subscriber services, respectively. The Publisher node pushes the sensor data to

the message broker. Therefore this node is a standalone container hosted on the

fog node connected to the Arduino outside. Similarly, the Subscriber node receives

the broadcast of each update from the message broker and makes adjustments to

actuators. Therefore, this node is also a standalone container hosted on the fog

node connected to the Arduino wired with actuators.

This service blueprint of the design indicates that at least four different mi-

croservices (Message broker, web viewer, sensor data publisher, and Subscriber

with climate controller) are required. Interestingly, this design illustrated in Fig-

ure 6.4 requires only one URI change inside the purple node named Subscriber.

That could dynamically change to utterly different climate conditions, probably

requiring one from a specific event. Hence, this fog federation framework provides

a versatile platform to deploy services on demand on the fly.

6.2.2 TOSCA Service Template

With these Node and Relationship types provided by the FogDEFT framework

the TOSCA Service Template2 of the blueprint given in Figure 6.4 is shown in

Listing 6.9.

6.2.3 Results and discussion

We deployed the Service Template given in Listing 6.9 on the prototype Figure 6.3

from a remote system (corresponds to the control room) with the xOpera orches-

2https://github.com/cloud-and-smart-labs/climate-control/blob/main/tosca/

service.yaml

https://github.com/cloud-and-smart-labs/climate-control/blob/main/tosca/service.yaml
https://github.com/cloud-and-smart-labs/climate-control/blob/main/tosca/service.yaml
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1 topology_template:

2 node_templates:

3 outdoor-node:

4 type: tosca.nodes.Compute

5 attributes:

6 private_address: 192.168.0.103

7 public_address: 192.168.0.103

8

9 indoor-node:

10 type: tosca.nodes.Compute

11 attributes:

12 private_address: 192.168.0.105

13 public_address: 192.168.0.105

14

15 docker-swarm-leader:

16 type: fog.docker.SwarmLeader

17 requirements:

18 - host: indoor-node

19

20 docker-swarm-worker:

21 type: fog.docker.SwarmWorker

22 requirements:

23 - host: outdoor-node

24 - leader: docker-swarm-leader

25

26 broker-service:

27 type: fog.docker.Services

28 properties:

29 name: broker

30 url: https://repo/brokr/docker-compose.yaml

31 requirements:

32 - host: docker-swarm-leader

33 - dependency: docker-swarm-worker

34

35 sensor-data-publisher:

36 type: fog.docker.Containers

37 properties:

38 name: publisher

39 url: https://repo/pub/docker-compose.yaml

40 requirements:

41 - host: outdoor-node

42 - dependency: broker-service

43

44 actuator-data-subscriber:

45 type: fog.docker.Containers

46 properties:

47 name: subscriber

48 url: https://repo/subs/docker-compose.yaml

49 requirements:

50 - host: indoor-node

51 - dependency: broker-service

Listing 6.9: TOSCA Service Template
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Figure 6.5: One of the valid orders for deployment/undeployment

trator. The deployment and undeployment order of the nodes follows topological

sort of application topology shown in Figure 6.4. Therefore, one of the valid de-

ployment and undeployment orders is given in Figure 6.5.

The resource utilization of each node (Indoor, Outdoor, and Workstation) is

given in Table 6.3. This resource usage only includes the resource consumption

of these processes responsible for the orchestrations of the fog services. Resource

consumption of fog services is out of the framework’s scope. In our experiment,

the deployment and undeployment took around 121.05s and 96.90s, respectively,

from the workstation with a single thread.

6.3 Summary

The FogDEFT framework is evaluated with two case studies Remote LED and

Climate control system. In Remote LED, services are designed and deployed on

three Raspberry Pi connected to LED via GPIO pin and gives a LED toggle button

through a webpage. In the Climate control system, the hardware is designed with

two Raspberry Pi and three Arduino boards (two Nano and one Uno). The fog

services are deployed on Raspberry Pi through TOSCA Service Templates, and

sensing and actuation are provided through the Arduino boards. With a change of

one Node Template inside the TOSCA Service Template, utterly different climate

conditions are achievable.
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Table 6.3: Resource utilization and performance (climate control)

Device CPU (%) Memory (MB)

Raspberry Pi 4
Indoor
Node

Raspberry Pi 4
Outdoor
Node

Workstation
Orchestrator



Chapter 7

Conclusion and Future Work

We have created TOSCA node types and relationship types for modeling a fog

application using TOSCA to build a fog federation framework: FogDEFT that

allows fog service on-demand deployment through a single command. The frame-

work abstracts the heterogeneity of fog devices and provides a standardized plat-

form for deploying custom or user-developed applications on the fly demonstrated

in two case studies. The xOpera Orchestrator and ansible automation tool uses

Secure Shell (SSH) infrastructure to push ansible modules for the deployment

of the service. That makes the framework secure and agentless. Therefore, any

custom/user-developed application deployment is possible out of the box on the

fly with the given TOSCA Service Template.

Moreover, Docker containers have become de-facto standards for deploying

services with support across various platform and hardware architectures. The

fog devices have become more potent with the advancement of technologies, so

deploying Docker containers with negligible overhead has become a reality. How-

ever, some devices will be left out of Docker support. For these, options for native

deployment are always available with the System Service node type.

61
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7.1 Future scope

The development of TOSCA primarily targets the standardization of cloud ap-

plications. However, this work demonstrates the potential of TOSCA in stan-

dardizing fog services for IoT-driven applications. The orchestrator used in this

work was developed for the cloud application deployment in virtual machines. In

IoT, non-IP-based networking is prevalent for M2M communication. Therefore,

creating a lightweight IoT- focused orchestrator with non-IP-based network sup-

port can unlock huge possibilities like M2M or drone to drone on-demand service

deployment. Therefore, it opens plenty of future research areas.

7.1.1 Security issue

Deployment of the Docker container in privileged mode opens access to the entire

Kernel of the device. Then bind-mount with the file system and system services

opens access to the file system of the host devices. A most straightforward way

to handle this security issue is by creating a different user with limited privileges

for deploying containers, but it blocks the option to install the required packages

on the fly while deploying the service.

7.1.2 Connectivities

When a service is deployed behind the NAT, it limits the interoperability in-

side each NAT. Communication between two and more NATs can be established

through a cloud with message passing. However, this will also add to the delay,

which is a conflict of interest in fog computing.

7.1.3 Stateless and stateful applications

In the case studies, we carried out, most of them are stateless applications. How-

ever, stateful applications will store some data on the fog nodes or hold any state

of an application. Therefore in these cases, it is crucial to add some features to the

framework to migrate the application’s state with standardization while moving

the application from one fog setup to another one.
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and M. Berenguel. A new iot-based platform for greenhouse crop production.

IEEE Internet of Things Journal, 9(9):6325–6334, 2022.

[27] Justice Opara-Martins, Reza Sahandi, and Feng Tian. Critical analysis of

vendor lock-in and its impact on cloud computing migration: A business

perspective. J. Cloud Comput., 5(1), dec 2016.

[28] Rakiba Rayhana, Gaozhi Xiao, and Zheng Liu. Internet of things empowered

smart greenhouse farming. IEEE Journal of Radio Frequency Identification,

4(3):195–211, 2020.

[29] Hani Sami and Azzam Mourad. Dynamic on-demand fog formation offering

on-the-fly iot service deployment. IEEE Transactions on Network and Service

Management, 17(2):1026–1039, 2020.

[30] Hani Sami, Azzam Mourad, and Wassim El-Hajj. Vehicular-obus-as-on-

demand-fogs: Resource and context aware deployment of containerized micro-

services. IEEE/ACM Transactions on Networking, 28(2):778–790, 2020.

[31] Haleema Essa Solayman and Rawaa Putros Qasha. Portable modeling for icu

iot-based application using tosca on the edge and cloud. In 2022 International

Conference on Computer Science and Software Engineering (CSASE), pages

301–305, 2022.



BIBLIOGRAPHY 67

[32] Hui Song, Rustem Dautov, Nicolas Ferry, Arnor Solberg, and Franck Fleurey.

Model-based fleet deployment in the iot–edge–cloud continuum. Software and

Systems Modeling, pages 1–26, 2022.

[33] Ahmad F. Subahi and Kheir Eddine Bouazza. An intelligent iot-based system

design for controlling and monitoring greenhouse temperature. IEEE Access,

8:125488–125500, 2020.

[34] Orazio Tomarchio, Domenico Calcaterra, Giuseppe Di Modica, and Pietro

Mazzaglia. Torch: a tosca-based orchestrator of multi-cloud containerised

applications. Journal of Grid Computing, 19(1):1–25, 2021.

[35] Andreas Tsagkaropoulos, Yiannis Verginadis, Maxime Compastié, Dimitris
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