
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

LEOCraft: Towards Designing Performant
LEO Networks

Suvam Basak and Amitangshu Pal, Indian Institute of Technology Kanpur;
Debopam Bhattacherjee, Microsoft Research India

https://www.usenix.org/conference/atc25/presentation/basak

LEOCraft: Towards Designing Performant LEO Networks

Suvam Basak∗, Amitangshu Pal∗, Debopam Bhattacherjee†

∗Indian Institute of Technology Kanpur, †Microsoft Research India

Abstract
Low Earth Orbit (LEO) satellite constellations have revolu-
tionized Internet access for millions of users. OneWeb and
SpaceX are already operating constellations of hundreds and
thousands of satellites, offering Internet service directly from
space across 100+ countries. These exceptionally large net-
works come at a cost – thousands of routers (satellites) need to
fly at ∼22× the speed of sound, thus making network design a
non-trivial challenge. While the systems research community
with decades of deep networking expertise has a relatively
short window to influence the design of these networks, there
is a serious lack of the right tools to enable such efforts. To ad-
dress this, we introduce LEOCraft – an LEO network design
framework to help the community visualize and evaluate the
performance of different choices. LEOCraft offers integrated
optimization techniques tuned upon the domain knowledge
acquired from thousands of LEO constellation design’s per-
formance evaluations to optimize a new constellation design
∼5× faster than other off-the-shelf black-box optimization
techniques. LEOCraft scales up seamlessly, tested for 83K
satellites across multiple shells (more than 2× SpaceX’s long-
term proposal) with 1K ground stations, thus making it feasi-
ble for the community to explore LEO trajectory and topology
design for even the largest of mega-constellations.

1 Introduction
In the past few years, thousands of satellites have been de-
ployed in Low Earth Orbit (LEO) to serve worldwide high-
speed Internet broadband service directly from space [44].
The early movers of this new networking landscape, SpaceX’s
Starlink and OneWeb, initially relied upon bent-pipe con-
nectivity in the first generation of constellations [58]. Fur-
ther technological advancements have introduced robust laser
Inter-Satellite Links (ISLs), enabling space-borne mesh net-
works with high bandwidth and speed-of-light grade la-
tency [55]. Such a LEO satellite network can carry long-
haul Internet traffic over the satellite network, thus reducing
the requirement for denser Ground Station (GS) deployment
across the globe [2]. This development enabled Starlink and

Amazon’s Project Kuiper to propose a 2nd generation mega-
constellation of 30,000 [3] and 3,236 satellites [1] respec-
tively, to wrap the Earth with a dense mesh of LEO satellites.
However, the FCC approved only 7,500 satellites of Starlink
across three different altitudes [3]. SpaceX started launch-
ing these new generation satellites in December 2022 [61].
In contrast, Kuiper was recently in the testing phase of the
optical mesh network in space [5]. Therefore, none of the
operators has achieved the true scale of ISL-enabled mega-
constellations yet, keeping the brief window open for the
networking community to influence such design.

The secret of constellation design: The success of Starlink’s
early launches sparked researcher’s interest in exploring vari-
ous aspects of LEO networks. Such recent works [44–46, 50,
54–56, 58, 64, 67, 68, 76] have used Starlink, OneWeb, and a
few other constellation designs in their experiments since de-
tails are publicly available in the FCC filings [1,3,8,12,21,31].
However, none of these existing works include the complete
set of design parameters determining the satellite’s trajectory
as well as topology [45, 72, 92, 93]. Most of these efforts are
restricted to a single shell, considering the inter-shell connec-
tivity and aggregated performance measurement of multiple
independent shells as "an open problem" [93].

Furthermore, Starlink and OneWeb, the biggest constella-
tion operators, rely on proprietary systems, making their LEO
networks function like black boxes. Why they chose a partic-
ular design, and what traffic matrices it targets, is unknown
to the community. Therefore, in this work, we aim to unveil
the subtle crux of designing an optimized LEO network from
scratch. Our effort will help networking researchers under-
stand these ‘new space’ networks better.

Why constellation design is non-trivial?: Designing a satel-
lite network is not a new problem. In the 90s, serious ef-
forts [37, 41, 52, 65, 66, 89, 90] have been devoted in studying
constellation design. However, the current scale and design
objectives have significantly transformed over time, imposing
new challenges. Optimizing a satellite constellation in the 90s
emphasized coverage with a limited budget of a few 10s of

USENIX Association 2025 USENIX Annual Technical Conference 789

satellites, ensuring availability worldwide [42]. In contrast,
now, with the scale of a few thousand or more satellites, net-
work performance has become comparable to the terrestrial
networks [53]. Therefore, optimizing a constellation today is
no longer a geometrical optimization of overlapping satellite
coverage [51], but rather, an optimization of the satellite’s
orbital trajectories and their ISL topology for a given Inter-
net traffic demand matrix. Therefore, given the number of
satellites, the design problem is to decide upon several pa-
rameters describing ISL topology and each satellite’s orbital
trajectory at ∼22× the speed of sound, such that network
performance is maximized. A network design is already a
hard problem [62]; further joint optimization of orbital pa-
rameters with added dynamics of satellite motion makes it a
non-trivial high-dimensional optimization problem. A naive
brute-force grid search approach looking for maximum net-
work performance measurement could take years due to the
curse of dimensionality. A few previous efforts explored the
aspect of improving constellation performance with better
ISL topology [45, 72]; however, the approach [45] suffers
from scalability issues hence could not be extended to the
direction towards superior constellation design, i.e., optimiza-
tion of satellite’s trajectory at scale to enhance the network
performance.
Missing the right tools: An in-depth study of trajectory and
ISL topology optimization of the LEO network requires the
execution of tens of thousands of simulations while varying
one or more orbital/design parameters to measure how these
choices impact the network performance. Therefore, an LEO
network evaluation framework must offer the flexibility to
(i) rapidly implement different ideas (topology, ISL connec-
tivity, routing strategy, etc.), (ii) plug and play with various
optimization strategies, (iii) evaluate the effectiveness of opti-
mization strategies and further tuning these implementations.
Existing platforms, i.e., Hypatia’s [64] packet-level simulator,
or StarryNet’s [67] Docker container-based emulator, suffer
from fundamental scalability issues [63]. Hence does not go
well for large-scale (tens of thousands of satellites) trajectory
simulation. Another LEO network emulation platform xeo-
verse [63] is built upon a lightweight process-based network
emulator platform Mininet [20] and claims to outperform Hy-
patia and StarryNet by large margins; however, their source
code is not public for community use. Therefore, the commu-
nity lacks the right tools to approach large-scale trajectory
and topology optimization problems.
Our contributions: In this paper, we address these gaps
with LEOCraft – an LEO satellite constellation design explo-
ration, optimization, and visualization framework. LEOCraft
relies upon process-based parallelism [14], thus bypassing
the Global Interpreter Lock, a major computational bottle-
neck [17] in the existing platforms [64, 67]. It is designed to
be a modular framework that allows rapid implementation of
new design ideas with minimal code change (typically 100
lines of code), which helps to run new experiments quickly.

It operates at the flow level, computes network measurements
from the intuitive mathematical model of the LEO network
instead of resource-intensive packet-level simulations. For
instance, the performance evaluation of Starlink’s Gen1 three
shells of 3,888 satellites (S-1 to S-3 in Table 1) in LEOCraft
takes ∼2.5 minutes on a standard Desktop PC. Whereas with
Hypatia, it takes hours for only RTT measurement of Star-
link’s single shell of 1,584 satellites. We also tested LEOCraft
on a hypothetical mega-constellation of 83+ satellites across
multiple shells (as shown in Table 1). Thus, LEOCraft en-
ables rapid evaluation of design choices at a large scale. The
visualization module also generates interactive views of the
constellation, showcasing topology evolution and end-to-end
route changes to augment the intuition of LEO dynamics.

We use LEOCraft to rigorously study the constellation de-
sign for given traffic demand matrices across a set of GSes
and illustrate how the choices of design parameters impact
the performance of these LEO networks. Since Internet traf-
fic demand is skewed towards specific regions of the Earth
with higher populations, the performance measurements of
constellation designs exhibit common trends irrespective of
the satellite budget. We use this domain knowledge and
predictable characteristics of network performance measure-
ments to prune the search space drastically. This reduces the
running time by ∼5× as compared to the naive off-the-shelf
black-box optimization techniques. We also demonstrate how
inter-shell ISL can improve the throughput of a constellation
and highlight some shortcomings of such ISL usage. We made
LEOCraft publicly available [35] for community use.
Paper outline: The remaining paper is organized as fol-
lows – §2-3 summarize our overall background and problem
overview. Then §4-6 discusses the development, optimization,
and system design strategies used in LEOCraft framework.
§7-8 present the experimental evaluation. §9 summarizes the
related works. The paper is concluded in §10.

2 Background
Building an LEO constellation is a relatively new topic, so
this section aids the reader with the relevant background.

2.1 LEO constellation design parameters
A satellite’s trajectory around the Earth can be described by
six parameters given by Kepler’s law of interplanetary mo-
tion [84] using Two Line Element set (TLEs) [59], which
is a standard format of defining the position, velocity, and
trajectory of any Earth-orbiting object at a specific time
(epoch). Since establishing an ISL takes a few 10s of sec-
onds [45], satellites in a constellation follow a similar trajec-
tory to sustain the ISL connectivity for a longer period of time.
LEOCraft automatically generates the TLEs for each satellite
for the given six parameters defined in the following:
Altitude (h): The height of the LEO satellites from the sea
level typically falls between 500 to 2,000 km. These satellites
need to orbit the Earth at a fixed velocity to maintain an orbit

790 2025 USENIX Annual Technical Conference USENIX Association

Table 1: Constellation parameters of well-know space players [1, 3, 8, 12, 21, 31]. In this table S-x denotes x-th shell.

Starlink Gen1 Starlink Gen2 Kuiper
s o n i e h s o n i e h s o n i e h

S-1 72 22 53◦ 25◦ 550 km S-1 48 110 53◦ 25◦ 340 km S-1 34 34 51.9◦ 35◦ 630 km
S-2 72 22 53.2◦ 25◦ 540 km S-2 48 110 46◦ 25◦ 345 km S-2 36 36 42◦ 35◦ 610 km
S-3 36 20 70◦ 25◦ 570 km S-3 48 110 38◦ 25◦ 350 km S-3 28 28 33◦ 35◦ 590 km
S-4 6 58 97.6◦ 25◦ 560 km S-4 30 120 96.9◦ 25◦ 360 km OneWeb
S-5 4 43 97.6◦ 25◦ 560 km S-5 28 120 53◦ 25◦ 525 km s o n i e h

Telesat S-6 23 20 43◦ 25◦ 530 km S-1 36 49 87.9◦ 5◦ 1,200 km
s o n i e h S-7 18 18 115.7◦ 25◦ 614 km S-2 32 720 40◦ 5◦ 1,200 km

S-1 27 13 98.98◦ 10◦ 1,015 km S-8 12 12 148◦ 25◦ 604 km S-3 32 720 55◦ 5◦ 1,200 km
S-2 40 33 50.88◦ 10◦ 1,325 km S-9 28 120 33◦ 25◦ 535 km

at a particular height; hence, the orbital period of a satellite
is also fixed for a particular height. For instance, satellites
at 500 km of altitude need to orbit the Earth at ≈ 27,000
kmph; therefore, the orbital period would be ≈ 90 minutes.
Increasing the altitude of the satellites will decrease the orbital
periods, as these two factors are inversely proportional.

Angle of inclination (i): The angle between the orbital plane
and the Earth’s Equatorial plane (when satellites are moving
towards the north). Hence, a satellite with inclination 90◦

orbits the Earth over the north pole. Meanwhile, a lower incli-
nation tilts the trajectory; hence, the satellite orbits through
the lower latitudes.

Number of satellites per orbits (n): Each orbit in a LEO
satellite constellation contains a fixed n number of satellites
placed equidistantly across the orbit. All the satellites of fixed
altitude orbit the Earth at the same velocity; hence, the in-
between distance of 360◦/n is maintained consistently.

Number of orbits (o): Similarly, the constellation would have
o orbits, each with n satellites, uniformly spaced along the
Equatorial line to ensure even coverage of Earth’s surface.

Phase offset (p): Determines the relative positioning offset
between satellites of adjacent orbits. In our implementation,
p varies from 0 to 0.5. A phase offset of 0.5 denotes that the
n-th satellite of (o+1)-th orbit is positioned at the middle of
n and (n+1)-th satellites of o-th orbit.

Angle of elevation (e): The satellite’s coverage area on
Earth’s surface depends on the minimum elevation angle e as
shown in Fig. 1(a). This parameter depends upon the capa-
bility of space- and ground-based communication hardware.
LEO satellites use software-defined phased array antennas to
create spot beams on Gateway Ground Stations and User Ter-
minals [1, 3, 8]. Hence, the onboard software can regulate the
coverage area with the elevation angle. Table 1 summarizes
the constellation parameters of major space players.

Furthermore, the LEO satellite mega constellation design
comprising a few thousand or more satellites goes one step
ahead, where the satellites are divided into groups that may
have different designs; the satellites within a group follow
similar trajectories that help sustain the ISLs for longer pe-
riods, as shown in Fig. 1(b) using Kuiper’s proposed design.
In LEO constellation terminology, these groups are known as
shells. We assume that the satellites within a shell establish

(a) (b)

Fig. 1: (a) Low elevation e covers larger areas on the Earth’s surface. (b)
Kuiper design of three shells at altitudes of 630, 610, and 590 km with
inclination 51.9◦, 42◦, and 33◦, respectively.

four ISLs, two in the same orbit with leading and trailing
satellites, while the other two with satellites of two adjacent
orbits. Hence, each shell creates a layer of + shaped mesh net-
work, defined as +Grid topology [45]. The LEOCraft takes
six parameters to describe the design of each shell and auto-
matically generates the TLEs for all the satellites for these
shells, as illustrated in Fig. 1(b).

2.2 LEO network modelling and assumptions
The proprietary nature of the LEO constellation prohibits pub-
lic disclosure of key details, such as satellite connectivity poli-
cies, user terminal associations, and bandwidth distribution
mechanisms, etc. Thus, we base our assumptions on standards
widely adopted in prior literature.
Network model: In LEOCraft, given a set of design parame-
ters, we model the LEO satellite constellation as a big network
graph, where nodes represent the satellites and GSes, and
edges represent Ground to Satellite Links (GSLs) and ISLs.
Unavailability of precise geospatial information prevents the
modelling of individual user terminals [88]. Therefore, we
assume the GS located in a city serves as a proxy for the
demands of all the users in that city. Consequently, we allow
a GS to establish GSLs with all the satellites available above
the minimum angle of elevation e (from the horizon) at that
particular time.
GSL budget model: In the above network, capacities
of GSLs C are calculated from Shannon’s channel ca-
pacity theorem [82]. The atmospheric path loss is esti-
mated using the Free-Space Path Loss (FSPL) model [60].
With these, the channel capacity is expressed as C =

B log2

(
1+ Pt Gt λ

2

(2πd)2kBB × Gr
T

)
, where, Pt is the Tx power

USENIX Association 2025 USENIX Annual Technical Conference 791

(EIRP), Gt and Gr are the Tx and Rx antenna gains re-
spectively, λ is the wavelength, and antenna gain-to-noise-
temperature ratio Gr/T are taken from Ka-band specification
available in FCC filling [50]. d denotes the distance between
the Tx and Rx antenna, i.e., the distance between the satellites
and GSes, kB is Boltzmann’s constant, and B is the transmis-
sion bandwidth. Note that, in our implementation, B is divided
equally among the GSes under the coverage of each satellite.
ISL budget model: The laser ISLs are expected to have ex-
tremely low beam divergence properties and narrow beam
widths, minimizing interference issues [4]. Currently, ISLs
are in the early phase of deployment [30] or the testing phase
of different operators [5, 11]. Since the largest LEO network
operator Starlink’s satellites use 4 ISLs [43] and subsequently
all the prior work [45,64,67,92,93] made this a de facto stan-
dard, this work assumes and extends the same with capacity
of each ISL conservatively set to 50 Gbps [6, 7, 9]. Although
it is a configurable parameter in LEOCraft.

2.3 Internet traffic demand matrices
Since a geospatial dataset of individual Starlink users is not
public [88], we use the following intuitive traffic demand
matrices (TM) that follow the gravity model [79].
High population TM: We use World Cities Database [34] for
the population dataset, where GSes are located in 100 most
populous cities around the globe. We assume that 10% of a
city’s population is the targeted customer, with average data
usage per head of 300 Kbps [76]. The traffic demand across
the GSes is inversely proportional to their geodesic distances.
High GDP population TM: Apart from the city population,
typically, the Internet traffic is also proportional to the city’s
GDP [38]. So, in this demand matrix, we assume that the
targeted market is 10% of the total population of the 100 most
populous cities. However, the data usage is weighted based
on the city’s GDP. We keep the mean data usage to be 300
Kbps. Similar to the previous matrix, the demand across the
GSes is inversely proportional to their geodesic distances.
Country capital TM: In this matrix, the GSes are located in
the capital of 233 countries. The demands across the GSes
are weighted proportionately to the country’s population and
in inverse proportion to the geodesic distances between GSes.
Global flight TM: In-flight Wi-Fi market is already a
billion-dollar industry, forecasting an annual growth rate of
11.8% [18]. Therefore, domestic and international airlines
are also potential target markets for the in-flight high-speed
Wi-Fi service [80]. For that, we use FlightRadarAPI [33] to
collect details of the in-flight aircraft worldwide. Then we
assume 50% of passengers of each flight above 10,000 feet
of altitude are communicating with GSes located at the 100
most populous cities via satellite network. We weighted the
demand matrix between the flights and the GSes using the
gravity model discussed above, whereas the weights are di-
rectly proportional to populations/passengers and inversely

proportional to the distance between the flights and the GSes.
Moreover, notice that the TMs are subject to the target mar-

ket. A satellite constellation designed to serve the shipping
industry might weight the demand matrices analogous to the
busiest trade routes in the ocean. Hence, many such intuitive
TMs can be formulated. However, our study is focused only
on the TMs discussed above.

2.4 Network performance metrics
We evaluate the constellations on the following three perfor-
mance metrics.
Throughput: We measure the throughput of the LEO satellite
constellation as a multi-commodity flow across the GSes. We
compute n shortest routes between the GSes at any given time
using Yen’s algorithm [91]. Then, we use the following linear
program to maximize the flow between all pairs of GSes.

Maximize: ∑
f∈F

D f ×
n

∑
r

R f
r (1)

Subject to: 0 ≤
n

∑
r

R f
r ≤ 1 | ∀ f ∈ F (2)

∑
(f ,r)∈Sl

D f ×R f
r ≤Cl | ∀l ∈ L (3)

Here, F is the set of flows, where a flow is defined as an or-
dered pair of GSes denoting traffic flow between one GS pair.
D f is the traffic demand for the flow f (demand between two
GS). Since we have n shortest routes between each pair of
GSes, R f

r denotes the fraction of demand D f flowing through
the r-th shortest route. Therefore, ∑

n
r R f

r the sum of n continu-
ous variable bounded within zero and one in constraint (2),
which ensures n shortest routes together can accommodate
at most 100% of the demand D f of any flow f ∈ F. Finally,
the links could be shared by more than one flow in the net-
work. Therefore, aggregated traffic flows sharing a particular
link are constrained by the capacity of that link. Hence, in
constraint (3), L is the set of all the links in the network, and
Sl denotes a set of flows f and their r-th shortest route that
shares link l. Therefore, ∑(f ,r)∈Sl

D f ×R f
r denotes total traffic

flow via link l, which is constrained by the Cl , the capacity of
link l. For all our simulations, we use n = 20.
Stretch (latency): We measure stretch between source and
destination GS pair as the ratio of the distance between two
locations over the satellite network through ISLs and their
geodesic distance. This metric demonstrates the inflation in
the length of the end-to-end routes. Since the scope of this
work is a comparative performance study of constellation
design, lower stretch and lower hop counts for end-to-end
routes are expected to give better network latency.

To understand the generalized nature of latency worldwide
across diverse routes, we classify all the routes into five cat-
egories based on their nature. The first two categories are
based on the distance between the source and destination

792 2025 USENIX Annual Technical Conference USENIX Association

(a) HG routes (b) NS routes (c) EW routes (d) NESW routes

Fig. 2: Illustration of the route categories based on the path orientation and distance, where red lines are GSLs, violet lines are ISLs, black dots are the satellites,
and green dots are the GSes.

GSes. Therefore, (a) any pair of GSes located within a dis-
tance of 2,000 km falls in the Low Geodesic (LG) distance
class. Such routes will always come with higher stretch be-
cause of the route overhead of going up from the source GS
to a satellite and coming down from a satellite to the desti-
nation GS, only to use one satellite hop (most of the time).
(b) Any source and destination pair of GSes located far apart
in different hemispheres (≥ 8,000 km) falls in the class of
High Geodesic (HG) distance routes as illustrated in Fig. 2(a).
All other routes that do not fall into the above two classes
are classified based on the orientation of the path. Therefore,
the routes between the GSes pairs oriented with (c) angle
above 75◦ shown in Fig. 2(b) are classified as North-South
(NS) routes, (d) angle below 15◦ shown in Fig. 2(c) are classi-
fied as East-West (EW) routes, and (e) angle within 15◦ and
75◦ shown in Fig. 2(d) are classified as NorthEast-SouthWest
(NESW) routes. For overall stretch tendency, we report the
median stretch and hop counts of each category.

Coverage: One of the unique potentials of the LEO satellite
constellation is to offer genuinely global high-speed Internet
service irrespective of geographical challenges. However, to
sustain the business, the obvious choice of a constellation
operator would be to optimize the satellite trajectories to
provide higher availability where the volume of customers is
high. Therefore, we measure the coverage of a constellation
as ∑

T
t=0 ∑

G
g=0 log10(nt,g)/T , where G is the number of GSes,

T is the number of epochs, and nt,g denotes the number of
satellites visible from the g-th GS at t-th epoch. The log(.)
function models the diminishing returns as the number of
visible satellites per GSes increases.

3 LEO network design from scratch

With the preceding background, we now delve into the LEO
trajectory design problem, along with the research challenge
of high dimensionality.

Problem statement: We define our problem statement as
follows – given the number of satellites (which is our net-
work budget), location of GSes, and traffic demand matrix
across these GSes, we need to find the constellation design
parameters of one or more shells (s) and their operational alti-

tude (h), inclination (i), minimum elevation angle (e), number
of orbits (o), satellites per orbit (n), and the phase offset (p)
between satellites in adjacent orbits that maximize some ob-
jective function such as throughput, coverage, latency, or a
combination of these. However, in this work, we focus on
a performant constellation that maximizes the throughput.
Higher throughput produces more salable bandwidth, which
might fetch higher revenue for the constellation operator.
The curse of dimensionality: Therefore, in a mega-
constellation of multiple shells, a brute-force grid search ap-
proach to find near-optimal design parameters will require
the execution of |s|× |h|× |i|× |p|× |o|× |n|× |e|× |t| sim-
ulations, where |x| means number of distinct choices of pa-
rameter x, and |t| denotes the number of epochs over 24 hours
(one complete rotation of Earth) to estimate the performance
fluctuation for LEO dynamics. Each simulation involves gen-
erating a network graph, calculating link budgets, computing
routes globally, and evaluating network performance. That
could take from a few minutes to hours or even days, depend-
ing on the number of satellites and GSes in the constellation.
Therefore, executing these many simulations with many com-
putational cores could take years.
Can we prune the search space? Given the large search
space, meta-heuristic methods like Simulated Annealing [85],
Differential Evolution [83], and Adaptive Particle Swarm Op-
timization [81] can offer near-optimal solutions. In addition,
we leverage domain knowledge and heuristics related to the
design parameter’s impact on network performance to reduce
the search space significantly. Our comprehensive analysis of
design parameters highlights their performance characteristics
and inter-dependencies. This insight refines meta-heuristic
approaches. Further enables tuning of local search strategies
to outperform out-of-the-box meta-heuristics.

4 Exploring the search space
We first explore the search space by conducting a single-
dimensional analysis and extend the understanding to higher
dimensions. Therefore, first, we focus on the single shell anal-
ysis; to characterize the effect of different design parameters,
we use Starlink’s first shell, which consists of 1,584 LEO
satellites operating at 550 km of altitude. The satellites are

USENIX Association 2025 USENIX Annual Technical Conference 793

(a) Throughput and coverage (b) Stretch (c) End-to-end hop counts

Fig. 3: The propagation of satellites over time leads to fluctuation in (a) throughput (left Y-axis), (b) stretch, and (c) hop counts within certain bounds. However,
(a) coverage is consistent (right Y-axis).

distributed among 72 orbits inclined at 53◦, each with 22 satel-
lites. The elevation angle of Starlink’s first shell is chosen as
25◦. Unless otherwise mentioned, we use a phase offset of
0.5 in our simulations. All these parameters and upper Ka-
band specifications are taken from the FCC filing [10, 50].
Performance characteristics of other proposed constellations
are discussed in §A.1. We use the High population TM for
this section; however, in §A.2, it shows that the findings are
generalizable to other traffic metrics as well.
Performance impact of LEO dynamics: We begin by mea-
suring network performance fluctuations due to LEO dynam-
ics. We simulate Starlink’s first shell for 24 hours with 5 min-
utes of granularity. The network performance metrics from
the simulation are shown in Fig. 3. Notice that in Fig. 3(a), the
constellation gives consistent coverage, and none of the GSes
experience an outage within 24 hours. However, throughput
shows a periodic pattern of fluctuation of ∼ 150 Gbps, which
is up to 7% of the maximum recorded throughput. Similar
behavior is also noticeable for other performance metrics, i.e.,
stretch fluctuates within a small margin, and hop counts are
mostly stable, sometimes changing by at most two hops, as
shown in Fig. 3(b)-(c), respectively. It is essential to notice
that due to the Earth’s rotation, one orbit will eventually take
the position of the next. Also, within each orbit, one satellite
will take the position of the next satellite after a specific time.
Hence, the fluctuation rate of performance metrics will be
within a relatively small margin.

Key takeaway(1):- The network performance remains
stable, fluctuating within 6.5% due to LEO dynamics.

Performance impact of altitude (h): Operating a satellite
at a higher altitude with the same elevation angle e will in-
crease the coverage area on the Earth’s surface as illustrated
in Fig. 4(a). Therefore, operating a shell at higher altitudes of
600 km gives much denser coverage than operating the same
at an altitude of 300 km, as shown in Fig. 4(b)-(c), respectively.
We simulate Starlink’s first shell by gradually increasing the
altitude h of the shell from 300 to 2,000 km, while all the
other parameters are kept constant. The results of the simula-
tion are shown in Fig. 5. At higher altitudes, the availability
of satellites per GS increases, which is visible in the coverage
metrics of the constellation in Fig. 5(a). This higher availabil-
ity of satellites per GS gives higher end-to-end path diversity,

leading to a throughput hike up to a certain point. However,
beyond a certain point, increasing h results in longer GSLs
with higher atmospheric loss. Also, at higher altitudes, many
GSes connect to the satellites, which results in low bandwidth
for each GSL. As a result, throughput eventually starts falling.

Next, we discuss the effect of h on network latency. Notice
that the shells at lower altitudes limit satellite availability
per GSes. For that, the shortest path has to take a few more
hops to reach the satellites above the destination GSes, as
illustrated in Fig. 4(a). This behavior is also visible in our
simulation results in Fig. 5(b)-(c). Apart from the LG routes,
when the altitude of the shell is increased beyond 300 km,
the stretch and hop count decrease drastically. The stretch
starts inflating beyond 700 km because of longer GSLs. For
LG routes, source-destination pairs are close to each other; a
higher h results in longer GSLs, leading to increased stretch.

Key takeaway(2):- A fixed number of satellites at lower
altitudes could lead to coverage gaps and higher latency,
while higher altitudes reduce aggregated throughput.
Slight altitude changes have minimal impact.

Performance impact of inclination angle (i): Similarly, we
simulate Starlink’s first shell with the angle of inclination
i ranging from 5◦ to 175◦. The results are shown in Fig. 6.
From Fig. 6, we can observe that the network performance
corresponding to inclination 5◦ to 90◦ is completely symmet-
ric to the performance from 90◦ to 175◦. This is because when
a shell is inclined at 45◦, the satellites that move towards the
north at the angle of 45◦ in one hemisphere are the same satel-
lites that move towards the south at an angle of 135◦ in the
opposite hemisphere. Thus, a shell inclined above 90◦ is sym-
metric to an inclination below 90◦. Therefore, we focus on the
first half of the performance metrics (5◦ to 90◦) to understand
the inclination’s impact on the network performance.

In Fig. 6(a), we can observe that the throughput and cov-
erage peak arise around 40◦ of inclination. This is because,
if we look at the 100 GSes locations at most populated cities
in Fig. 7(a), then we can observe that 40◦ of inclination re-
stricts the satellite trajectories exactly above these 100 GSes,
as shown in Fig. 7(b). However, moving towards the polar
inclination (towards 90◦) reduces the coverage since satel-
lites spend a certain amount of time in the polar regions,
where not a single GS is located in our setup, as illustrated

794 2025 USENIX Annual Technical Conference USENIX Association

(a) (b) At h = 300 km (c) At h = 600 km

Fig. 4: (a) Higher altitude increases coverage areas, resulting in route changes with fewer hops. (b) and (c) illustrate coverage footprint expansion of Starlink’s
first shell when the altitude is increased.

(a) Throughput and coverage (b) Stretch (c) End-to-end hop counts

Fig. 5: (a) Increasing altitude h improves the coverage (right Y-axis) and throughput up to a certain point (left Y-axis). (b) Very high/low h negatively impacts
stretch (left Y-axis), LG routes are most affected (right Y-axis) (c) high h reduces hop counts for all routes (HG routes in right Y-axis).

in Fig. 7(c). Thus, it negatively impacts the throughput. In
contrast, a too-low inclination squeezes all the satellites close
to the equatorial region. Therefore, most GSes at relatively
higher latitudes go out of coverage, as illustrated in Fig. 7(d),
and as a result, the throughput falls, whereas the number of
disconnected GSes rises in Fig. 6(a).

Fig. 6(b)-(c) shows the performance of stretch and hop
counts. Here, polar orbits give better results only for the NS
routes because constellations with lower inclinations can not
provide any straight path over ISLs in the north-south orienta-
tion. This is illustrated in Fig. 8. From Fig. 8, we can observe
that the shortest path from St. Petersburg to Johannesburg is
stretched with a lower inclination. On the other hand, lower
inclination provides better stretch and hop count for EW and
NESW routes, as observed for the routes between Dar es
Salaam to Kabul and Khartoum to Hong Kong, respectively.

Key takeaway(3):- The orbit’s inclination should align
with GSes placement and route orientation to enhance
coverage and throughput and minimize latency.

Performance impact of elevation angle (e): As illustrated
in Fig. 1(a), a reduction in e increases the coverage area of
the satellites on the Earth’s surface. That is clearly visible
in Fig. 9(a), where e is varied from 5◦ to 50◦ for Starlink’s
first shell. As higher coverage results in more available satel-
lites per GS, the end-to-end path diversity and throughput
increase. However, after 13◦ of elevation, even though cov-
erage increases, throughput starts falling drastically. This is
because such a small value of e (e < 10◦) results in GSLs
over the Earth’s horizon and therefore experiences enormous
atmospheric path loss. This is illustrated in Fig. 10, where
we can observe that at 5◦ elevation, the routes between two
continents go through a single satellite hop, as compared to

a few 10s of hops for 30◦ and 50◦ elevation. Thus, a lower
e provides excellent hop counts and stretch results for all
categories of routes, as shown in Fig. 9(b)-(c).

However, line-of-sight GSLs with a very low e may not
be feasible without obstruction in urban areas (unless anten-
nas are placed at higher elevations). However, a low value
of e may be useful for providing connectivity over a long
distance in less obstructed areas, such as oceans or polar re-
gions. For instance, OneWeb FCC reports [8] mention that
OneWeb satellite can reach up to 5◦ of elevation on the ocean
to reach gateway GSes on the land area, compromising on
power density, as they do not have plans of using ISLs yet.

Key takeaway(4):- While too extreme values are unfa-
vorable, e should be tuned based on other parameter
values to unleash better performance.

Performance impact of the number of orbits (o) and phase
offset (p): Since all the orbits have the same number of satel-
lites, changing the number of orbits o inherently means ad-
justing the number of satellites n per orbit to maintain a fixed
number of satellites. These orbits are equally spaced on the
Earth’s equator. Hence, a design with few orbits generates
high east-west path diversity due to the large number of ISLs
between satellites in adjacent orbits, as shown in Fig. 11(a).
On the other hand, routes with high geodesic distances expe-
rience higher hop counts, as these routes follow intra-orbital
ISLs to reach the destination GSes. Similarly, a design with
many orbits reduces both hop counts in the high geodesic
distance and east-west path diversity, as shown in Fig 11(b).

The phase offset p decides the relative positioning of satel-
lites between adjacent orbits, i.e., in a constellation with 0.5
phase offset, a satellite n in orbit (o+1) will be in the middle
of satellite n and (n+ 1) of orbit o, hence creating zigzag

USENIX Association 2025 USENIX Annual Technical Conference 795

(a) Throughput and coverage (b) Stretch (c) End-to-end hop counts

Fig. 6: Performance measurement of i from 0◦ to 90◦ is symmetric to the measurement of 90◦ to 180◦. (a) 40◦ provides best throughput (left Y-axis) and coverage
(right Y-axis), too low/high i impacts negatively. (b), (c) Polar i provides better stretch (right Y-axis) and hop counts for NS routes and lower i provides better
stretch (left Y-axis) and hop counts for other routes.

(a) GS locations (b) At i = 40◦ (c) At i = 90◦ (d) At i = 5◦

Fig. 7: (a) Location of the GSes at the most popular cities. (b) i = 40◦ restricts the trajectory of satellites on main population centers. (c) Higher i provides denser
coverage at the polar region, whereas (d) lower i leaves most of GSes out of coverage.

(a) At i = 90◦ (b) At i = 50◦ (c) At i = 30◦

Fig. 8: (a) Higher i provides better stretch with straight NS routes and zigzag
ISLs for EW and NESW routes inflate the stretch. (b) Inclined trajectory
provides better stretch for NESW and slightly improves EW stretch, whereas
(c) very low i provides better EW stretch, leaves end-to-end GSes of NS out
of coverage.

EW routes as shown in Fig. 11(d). On the other hand, with 0
phase offset, the ISL creates a precise +Grid shape network,
as shown in Fig. 11(c). Hence, it is essential to note that these
three parameters o, n, and p together describe the topological
structure of the satellite mesh network. Therefore, after deeply
exploring and analyzing the high-dimensional search space,
our key discoveries are as follows:
(i) When the values of h, i, and e are close to optimal val-
ues, any number of orbit o which is sufficiently larger than
the number of satellites per orbit n (o >> n) at a phase off-
set p = 0.5 produce higher throughput for any sufficiently
large constellation. This behavior is shown in Fig. 12(a) for
Starlink’s first shell, where 100 GSes are located across most
populated cities and the optimized value of i and e is chosen
to 40◦ and 15◦ (§4) respectively. Notice that when the number
of orbits is sufficiently large (o > 66), it gives a clear trend of
increase in throughput with higher p.
(ii) This behavior is consistent across all the shells of Starlinks

and Kuipers where the number of satellites is sufficiently large
(≥ 300 satellites). The reason behind this behavior is demon-
strated in Fig. 12(b)-(c). Notice that as we move towards
higher o and p, median hop counts reduce, and the path diver-
sity increases for HG routes without impacting other routes
(i.e., NS, EW, NESW, LG); as a result, the constellation ac-
commodates more traffic demands. The same is demonstrated
between two GSes located in South Asia and North America
in Fig. 13. When the constellation is designed with large o
at p = 0.5, these two GSes experience high path diversity.
Reducing either o or p negatively impacts the path diversity.
(iii) Change in the value of o or p essentially tweaks the mesh
network at space, i.e., changes the ISL topological structures,
which is illustrated in Fig.11. Therefore, when h, i, and e
are fixed, any combination of o (hence n) and p produces
consistent coverage.

Key takeaway(5):- For a sufficiently large constellation
(≥ 300 satellites), using larger o (o >> n) with a phase
offset of 0.5 increases throughput.

5 Shaping an optimization strategy
Now, we narrow down the search space using domain knowl-
edge and key takeaways from the previous section. The out-
lined strategy helps optimization techniques converge faster.
Reducing the search space: As discussed earlier, the design
of a single shell of a constellation deals with six parameters,
i.e., h, i, e, o, n, and p. Since the topological structure is consis-
tent and performance fluctuation is not significant over time, t
could be ignored (takeaway (1)). Based on the observation of

796 2025 USENIX Annual Technical Conference USENIX Association

(a) Throughput and coverage (b) Stretch (c) End-to-end hop counts

Fig. 9: Lower e provides better (a) coverage (right Y-axis) and throughput up to a certain point (left Y-axis). (b), (c) Lower e also provides better stretch and hop
counts, whereas higher e (≥ 50) start creating coverage gaps.

(a) At e = 5◦ (b) At e = 30◦ (c) At e = 50◦

Fig. 10: (a) Too low e enables cross-continent single hop routes with over
the horizon GSLs, whereas (b) higher e reduces coverage area, thus, cross-
continent NS, EW, and NESW routes increase up to 10s of satellite hops. (c)
Too high e creates coverage gaps, hence, leaves GSes of NS routes out of
coverage.

coverage metrics, these six parameters can be classified into
two groups:

• GROUP-I: Set of parameters that impacts the constella-
tion’s coverage, i.e., h, e, and i.

• GROUP-II: Set of parameters that do not impact cover-
age, i.e., o, n, and p.

Now, notice that when the parameters of GROUP-I are
optimized, then in GROUP-II, any number of orbits o which
is sufficiently larger than the number of satellites per orbit n at
phase offset p= 0.5 produce higher throughput than any other
combinations (takeaway (5)). Hence, in our search strategy,
we keep o to its maximum value (which will determine the
value of n as well), p = 0.5, and then optimize the values of h,
e, and i. Therefore, the search space is reduced to these three
parameters of GROUP-I.

Furthermore, the scope of varying h is limited by various
non-networking factors, i.e., FCC, ITU regulation [19, 24],
radiation hazards [73, 78], rate of orbital decays [86], etc.
Apart from that, because of symmetric performance outcomes
(takeaway (3)), we restrict the parameters i up to 90◦. It is
also desirable to avoid too low inclination to reduce the in-
terference with GEO satellites that operate over the Equa-
tor [26]. The range of e is also limited by the satellites and
GSes communication hardware, which is not incorporated in
our implementation.
Proposed search strategy: After trimming down the search
space, LEOCraft tries to optimize the values of i, e, and h by
using Variable Neighborhood Search (VNS) [57, 74] strategy.
VNS starts with an initial solution x; in every iteration, it

discovers the neighborhood of the current solution N(x) and
takes the best neighborhood. The process is repeated until
the convergence criteria are reached (i.e., the solution starts
saturating). In LEOCraft, we use a random step size at ev-
ery iteration. While choosing the initial solution, we observe
that i ≈ 30◦ and e between 10◦ to 20◦ converge faster. The
intuition behind this is that the median latitude of the 100
most populous cities is 29.6◦, and lower elevation gives good
throughput for high path diversity (takeaway (4)).

6 Designing of LEOCraft

Overview of other simulation platforms: The well-known
LEO network simulation and emulation platforms in the com-
munity are Hypatia [64], StarryNet [67], and xeoverse [63].
xeoverse is a relatively new LEO network emulation platform
built upon network emulation platform Mininet [20]. xeo-
verse claims to outperform Hypatia and StarryNet by large
margins [63]; however, xeoverse is not public for commu-
nity use. On the other hand, StarryNet is a data-driven em-
ulation platform partially available [70] to the community.
StarryNet uses Docker containers [15] to emulate each node
(satellites, GSes, user terminals) and Python’s thread-based
parallelism [32] for updating the state of virtual links (ISLs
and GSLs) connecting containers [63]. Thus, StarryNet is
resource-intensive, and scalability by default is constrained
by the Docker engine’s upper limit of its bridge interface
(up to 1,023 containers [13] on a single machine [63]). Due
to CPython’s Global Interpreter Lock (GIL) [17], the link
state update procedure of StarryNet with thousands of threads
experiences a bottleneck, too. Hypatia is based upon ns-3
packet-level simulation platform [22]; hence, the scalability
is constrained by the ns-3’s limitations. Since Hypatia fails to
utilise multiple CPUs, simulation execution drastically slows
down with larger constellation [63, 64].
System design: After exploring the implementation of the
above platforms, we found that a significant portion of the
performance bottleneck arises from the software layer. This is
because the LEO satellite constellation is treated as a single,
monolithic block. However, within this block, most compu-
tations are independent of one another. For example, deter-
mining the coverage area of one satellite does not depend
on calculations for other satellites. Similarly, computing a
route from one GS to another is independent of the routes

USENIX Association 2025 USENIX Annual Technical Conference 797

(a) o = 22, n = 72 (b) o = 72, n = 22 (c) p = 0 (d) p = 0.5

Fig. 11: Parameter o, n, and p together determine the ISL topological structures. (a), (b) n and o manipulates height and width to deform +Grid topological
structure to rectangular grid cells. (c) Lower p forms a perfect +Grid topology, (d) higher p transforms +Grid to diamond (⋄) shaped cells.

(a) Changing o and p (b) Changing o while p = 0.5 (c) Changing p while o = 72

Fig. 12: When i and e are set to 40◦ and 15◦, (a) larger o (≥ 66) at a higher p provide better throughput. (b), (c) Such combinations reduce the hop counts (right
Y-axis) and increase the path diversity for HG routes, and therefore accommodates more traffic for both parameter o in and p.

(a) o = 144, p = 0.5 (b) o = 48, p = 0.5 (c) o = 144, p = 0

Fig. 13: 20 shortest HG routes from South Asia to North America (a) have
way higher path diversity with o = 144 and p = 0.5 than (b) lower o at
p = 0.5 and (c) lower p at o = 144.

between other pairs of GSes, and so on. We exploit this in
the implementation of LEOCraft [35], where each component
(such as satellites and GSes) operates as an independent block
with format-restricted data exchange APIs. This allows us
to distribute workloads uniformly across all available CPUs,
effectively shifting the performance bottleneck from the soft-
ware layer to the underlying hardware.

In Fig. 14, we represent LEOCraft’s simulation workflow.
In LEOCraft LEO constellation builder creates a top-level
instance of LEO constellation based on specified design pa-
rameters and GS locations. This LEO constellation instance
consists of all LEO network component instances (GSes, satel-
lites, and ISLs) in it. The LEO Constellation Simulator acts
as an execution framework in LEOCraft. It accumulates LEO
constellation instances in the Task queue and evaluates the
given batch of instances in parallel. This parallelism is at the
functional level across all the LEO constellation instances in
the Task queue. For that, LEO Constellation Simulator creates
a pool of worker processes corresponding to each available
CPU [14]. These worker processes remain active for the entire
duration of the simulation execution, thus minimizing process
creation overhead too. Each worker receives data (instances of

LEO network components) and function references, executes
these functions on the data, and sends the results back to the
respective LEO Constellation instance through the dispatcher.
The LEO Constellation accumulates the results of each asyn-
chronously called function. Once all the function calls return,
it writes back the evaluation results. Then LEO Constellation
Simulator removes the instance from the Task queue.

This process-based concurrency [14] effectively bypasses
the GIL [17], the primary performance bottleneck for CPU-
bound tasks, allowing uniform use of all CPUs even for a
single LEO Constellation instance in the Task queue. As a
result, LEOCraft evaluates a large constellation within a few
minutes. For the interested readers, §A.5 provides an overview
of LEOCraft APIs for simulating any LEO constellation.

7 Performance evaluation of LEOCraft
We now evaluate the performance of LEOCraft to examine
constellation-scale behavior. We compare the effect of differ-
ent traffic matrices, optimization strategies, inter-shell con-
nectivity, etc., using LEOCraft. In addition to these, we also
compare and evaluate the performance of LEOCraft against
existing platforms in §8.
Comparison with other optimization techniques: We now
evaluate LEOCraft with different optimization strategies
while scaling the constellation sizes. Specifically, we com-
pare the network performance and running time of LEOCraft
with four optimization techniques, i.e., Simulated Annealing
(SA) [85], Differential Evolution (DE) [83], Adaptive Particle
Swarm Optimization (A-PSO) [81], and Variable Neighbour-
hood Search (VNS). The implementations of A-PSO and VNS
are integrated into the LEOCraft framework, whereas for SA
and DE, we use SciPy’s optimize APIs [25]. We use a max-

798 2025 USENIX Annual Technical Conference USENIX Association

Fig. 14: LEOCraft’s simulation framework.

imum iteration of 100 (60) for SA when domain knowledge
of the search space is not in use (domain knowledge in use1).
Similarly, for A-PSO, the number of iterations and particles is
25 and 20 (25 and 10), respectively, when domain knowledge
is not in use (domain knowledge in use). These hyperparame-
ters are empirically decided upon through a series of trials of
synthetic constellations of different sizes. We evaluate the run-
ning time of these optimization techniques on a workstation
powered by 16 core (24 thread) 12th Gen Intel(R) Core(TM)
i9-12900 with 64 Gigabytes of memory.

The time taken to optimize the design parameters of differ-
ent constellation sizes using different optimization techniques
is shown in Fig. 15(a). Notice that when the same optimiza-
tion techniques are used after pruning the search space using
domain knowledge (§5), the average running time is reduced
by ∼2.1×, ∼4.2×, ∼2.2×, and ∼13.7× for SA, DE, A-PSO,
and VNS, respectively. Interestingly, VNS with domain knowl-
edge outperforms all three metaheuristic techniques, as shown
in Fig. 15(a). VNS is on average ∼2.2× times faster than
the fastest metaheuristic technique when the search space is
pruned with domain knowledge and at least on average ∼4.9×
faster than the naive approaches. It is worth noting that DE,
VNS, and A-PSO evaluate the cost function in parallel (evalua-
tion of different design parameter combinations). In contrast,
SA executes serially. However, if the running time is not the
constraint, then the optimized design parameters produced by
these four techniques are pretty similar. This is observed from
Fig. 15(b)-(c), where we compare the throughput and stretch
of NS routes of these optimized designs. Notice that the mea-

1Here “using domain knowledge” refers to running meta-heuristics within
the reduced search space discussed in §5. In contrast, “without domain
knowledge” excludes evaluations over 24 hours, as they fail to converge.

sured throughput varies marginally (standard deviation ±60
Gbps for 3,888 satellites) in Fig. 15(b), and the median stretch
of NS routes deviation remains within 0.3, which is negligi-
ble variation as compared with the LEO dynamics (takeaway
(1)).

Outcome(1):- Insights drawn from extensive simula-
tions can greatly reduce the search time for suitable
constellation parameters.

Single-shell vs Multi-shell design: We now explore the im-
pact of multiple shells on the network throughput. For that,
we take Starlink’s first three shells, where the first two have
1,584, and the last one has 720 satellites, with altitudes of
540, 550, and 570 km [21], respectively. We do not consider
inter-shell connectivity in this set of experiments. The results
are shown in Fig. 16(a). Since these shells are independent
of each other, we optimized the design of these three shells
separately for our 100 GSes for the High population TM. The
optimized Starlink constellation with three shells produced a
throughput of 7.5 Tbps. Then, we merged the total budget of
satellites into one shell, i.e., a single shell with 3,888 satellites
produces a throughput of 8 Tbps when optimized. Further,
we test the same while merging the satellite budget of any
two shells out of three; thus, the constellation with two opti-
mized shells produced throughput between 7.5 and 8 Tbps as
illustrated in Fig. 16(a). We also test the same with a Kuiper
budget of three shells with 1,156, 1,296, and 784 satellites, re-
spectively, at altitudes 590, 610, and 630 km, respectively [1].
The observations are similar, i.e., the throughput observed
when three shells are separately optimized is 6.6 Tbps, and
when all satellites are merged and optimized in one shell, it is
7.4 Tbps. And any other combination falls in between these
two measurements illustrated in Fig. 16(b).

Outcome(2):- A single dense shell is more beneficial
when higher throughput is the objective. A dense mesh
network provides better path diversity for n shortest
routes than multiple shells with sparser satellites.

Inter-shell ISL connectivity: However, designing a large
constellation in one shell for higher throughput may increase
the risk of collision [69,75]. This motivates us to explore inter-
shell ISLs where we maintain the same +Grid ISL topology
across the satellites deployed in different shells. Therefore,
in LEOCraft, we simulate three shells of Starlink and Kuiper
with inter-shell links. After optimizing the design, the through-
put of these constellations reaches 8.01 and 7.34 Tbps for
Starlink and Kuiper, respectively. This is almost equal to the
throughput of merging the entire budget of a satellite into a
single shell since a few 10s of km difference in altitude has a
negligible impact on throughput (takeaway (2)).

The main drawback of this inter-shell connectivity is the
variation of phase offset with time. Since the orbital periods
of satellites at higher altitudes are slightly lower than those at

USENIX Association 2025 USENIX Annual Technical Conference 799

(a) (b) (c)

Fig. 15: (a) Comparing the running time of black-box optimization techniques without and with domain knowledge (shown with superscript ‘*’). Comparison of
(b) throughput and (c) median stretch of NS routes after optimization of the constellation design.

(a) Starlink (b) Kuiper

Fig. 16: Comparing the throughput with multiple shells for (a) Starlink and
(b) Kuiper.

Fig. 17: Throughput measurement with inter-shell ISL connectivity over 24
hours without hand off.

lower altitudes, the phase offset will gradually deviate with
time, and therefore, periodic hand-offs are needed to main-
tain the ISL connectivity and topological structure across the
neighboring shells. However, we observe that the hand-off
frequency for such a slight altitude difference (in 10s of km)
is low. Fig. 17 shows the throughput measurement over a
day when Starlink’s 3,888 satellites are deployed in differ-
ent shells, and inter-shell ISL connectivity is established in
case of multiple shells. As expected, the throughput remains
mostly consistent with minor fluctuation over time for the
single shell design. For multi-shell design, deformation of
the ISL topology due to the phase offset shift with time neg-
atively impacts the throughput. We can also observe that a
handoff after ∼ 13 and ∼ 4 hours may be needed for maintain-
ing the inter-shell ISL topology across two and three shells,
respectively.

Outcome(3):- Inter-shell ISLs enhance throughput
slightly but require occasional handoffs to maintain con-
nectivity and topology between shells.

Visualization features: LEOCraft provides a range of
visualization features, such as routes, satellite cover-
age, and constellation topologies. Some figures such as
Fig. 1, 2, 7, 8, 10, 11, 13 are snapshots of the LEO network

design’s interactive and responsive visualization. Multi-shell
mega constellations can be insanely dense networks that make
it difficult to visualize particular areas of interest. LEOCraft
visualization APIs allow cherry-picking of the components
of interest (set of satellites, GSes, ISLs, GSLs, routes, etc.)
for rendering. LEOCraft also generates frame-by-frame evo-
lution of the network at the granularity up to nanoseconds
to demonstrate how network topology and end-to-end routes
change over time due to the LEO dynamics. Some additional
details of visualization features are available in §A.3.

8 Comparing LEOCraft with other platform
Since StarryNet [67] does not scale up to a few thousand
satellites on a single machine, and xeoverse [63] is not public,
we choose to compare LEOCraft with Hypatia [64].
Packet-level vs. flow-level simulation: First, we highlight
the scope of comparison and the fundamental differences be-
tween flow-level and packet-level simulations to avoid any
misinterpretation for the readers. Notice that Hypatia is well-
suited for analyzing detailed network protocol behaviors, like
packet drops, retransmissions, or reordering due to handovers.
A flow-level simulation like LEOCraft is more appropriate for
examining architectural and policy-level trade-offs, such as
the effects of ISL topologies, routing choices, and GSes place-
ments on overall performance. Consequently, LEOCraft and
Hypatia are not competitors; rather, they complement each
other. A future simulation pipeline could utilize LEOCraft to
uncover systematic design issues in LEO networks at scale,
which could then be closely examined using Hypatia.
Latency comparison with Hypatia: In Hypatia, we simulate
‘pings’ at 1 second interval between three GS pairs, i.e., Delhi
to New York, Moscow to Paris, and Tokyo to Sydney through
the shortest route over the first shell of Kuiper, Starlink, and
Telesat for a duration of 200 seconds. Then we compute the
round-trip time (RTT) in LEOCraft between the same pair
of GSes over the same constellations. The results are shown
in Fig. 18. From this figure, we can observe that the mea-
sured RTT obtained from Hypatia closely matches with the
‘computed’ RTT of LEOCraft. The RTT of Moscow to Paris
is one-third of the latency of Delhi to New York since the dis-
tance between Delhi to New York is ∼ 5× than the distance
between Moscow and Paris. In contrast, Tokyo to Sydney

800 2025 USENIX Annual Technical Conference USENIX Association

(a) Kuiper first shell of 1,156 satellites (b) Starlink first shell of 1,584 satellites (c) Telesat first shell of 351 satellites

Fig. 18: Hypatia’s Ping closely matches with LEOCraft’s computed RTT for (a) Kuiper, (b) Starlink, and (c) Telesat.

Fig. 19: Comparison of simulation times with Hypatia and LEOCraft for
different constellation sizes.

routes experience latency equivalent to the HG route Delhi
to New York, despite these two endpoints being relatively
close to each other. This is because the orbital inclination
of Starlink and Kuiper are 53.0◦ and 51.9◦ do not generate
the straight route in the north-south orientation. In contrast,
Telesat’s inclination of 98.98◦ generates a straight route in
a north-south orientation, hence Tokyo to Sydney latency is
reduced by ∼ 50% as compared to Starlink and Kuiper.
Simulation time comparison with Hypatia: We now com-
pare the simulation time of Hypatia and LEOCraft in Fig. 19,
where we simulate the end-to-end latencies between 50 most
populous cities while increasing the size (number of satellites)
of a synthetic single shell +Grid constellation. The inclina-
tion angle, elevation angle, and altitude of the satellites are
kept as 90◦, 30◦, and 1,000 km, respectively. From the figure,
we can observe that the LEOCraft is ∼ 1.7 to 54.5× faster
as compared to Hypatia, and this difference keeps increasing
with the size of the constellation. While having more CPUs
will further speed up the simulation in LEOCraft due to its
design, which is not the case with Hypatia.

Additionally, to evaluate the scalability of LEOCraft with a
hypothetical mega-constellation consisting of 20 highlighted
shells in Table 12, which comes out to be a mega-constellation
of 83K satellites. We have observed that LEOCraft manages
to simulate this mega-constellation within a week on a system
powered by Intel Xeon Silver 4309Y (16) @ 3.6GHz and
128 Gigabytes of memory. This shows that LEOCraft is well-
suited for simulating mega-constellations consisting of tens
of thousands of satellites within a reasonable time.

9 Related work
Simulation and measurement: Several efforts [47,63,64,67,
68] have focused on creating simulation platforms for measur-
ing LEO networks. Notable examples include Hypatia [64],

2The last two shells of Starlink’s first generation are ignored as they only
have 6 and 4 orbits respectively, which leads to a sparse LEO network with
no inter-orbit connectivity.

StarryNet [67], and xeoverse [63], their strengths and limi-
tations has been briefly discussed in §6. Additionally, [46]
explores RTT fluctuation using intuitive mathematical model-
ing, avoiding resource-intensive simulations.

LEO topology: Most of recent studies [40, 47, 63, 64, 67, 68,
92, 93] have widely adopted the +Grid topology as the de
facto standard for LEO networks. In contrast, [45] proposed
an improved ISL topology to minimize hand-offs and enhance
throughput latency. Meanwhile, [72] highlighted the draw-
backs of +Grid, advocating for ×Grid topology to reduce
packet drops and hop counts. A recent study [92, 93] used
Hypatia [64] to analyze single-shell LEO topologies with
a limited set of design parameters. This work extends the
analysis to all parameters, including multiple shells, optimiz-
ing satellite trajectories based on the traffic demand matrix
between GSes.

10 Conclusion and future work

In this paper, we introduce LEOCraft [35], an open-source,
modular, and scalable framework for evaluating and visualiz-
ing LEO constellations. LEOCraft analyzes high-dimensional
search spaces to uncover the crux of LEO trajectory design
that enables trimming of search space to optimize constella-
tion design quicker. We also present findings on the perfor-
mance gain for inter-shell ISL connectivity.

In the future, we plan to extend the LEOCraft towards topol-
ogy and trajectory joint optimization [45,72]. While this work
focuses on maximizing throughput, mega-constellation op-
erators with humongous budgets often target diverse sectors.
For instance, Starlink’s deployment of two polar-orbit shells
improves connectivity in the polar region [27–29]. Addition-
ally, seeks FCC approval for VLEO deployment to enable
low-latency applications like fin-tech and gaming [16]. Opti-
mizing mega constellations for multiple objectives presents
another promising research direction.

Acknowledgments

We express our gratitude to our shepherd, Ivan Beschastnikh,
and the anonymous reviewers for their valuable feedback.
This research is funded by the Prime Minister’s Research Fel-
lowship (PMRF) from the Ministry of Education, Government
of India.

USENIX Association 2025 USENIX Annual Technical Conference 801

References

[1] Kuiper systems llc (technical appendix). https://
tinyurl.com/FCCKuiperSystems, 2019.

[2] Spacex adds laser crosslinks to polar starlink satellites.
http://tinyurl.com/starlinkAddISLs, 2020. Ac-
cessed: 2023-12-20.

[3] Fcc partially grants spacex gen2. https://tinyurl.
com/Gen2Approval, 2022.

[4] Spacex non-geostationary satellite sys-
tem/attachment a. https://fcc.report/IBFS/
SAT-LOA-20161115-00118/1158350.pdf, 2022.
Accessed: 2024-08-04.

[5] Kuiper completes successful tests of optical
mesh network in leo. https://tinyurl.com/
KuiperTestsISLLEO, 2023.

[6] Mynaric selected by esa. https://tinyurl.com/
MynaricSelected, 2023. Accessed: 2023-12-06.

[7] Next-generation condor mk3. https://tinyurl.com/
MynaricReleases/, 2023. Accessed: 2023-12-06.

[8] Oneweb fcc report. https://fcc.report/IBFS/
SAT-MPL-20200526-00062/2379706.pdf, 2023. Ac-
cessed: 2023-12-06.

[9] Space products condor mk3. https://tinyurl.com/
CONDORMk3, 2023. Accessed: 2023-12-06.

[10] Starlink fcc report. https://fcc.report/IBFS/
SAT-MOD-20190830-00087/1877671.pdf, 2023. Ac-
cessed: 2023-12-06.

[11] Starlink launches v2 mini-satellites with ’space lasers’.
https://tinyurl.com/starlinkISL, 2023. Ac-
cessed: 2023-12-06.

[12] Application for modification of market access
authorization. https://fcc.report/IBFS/
SAT-MPL-20200526-00053/2378318.pdf, 2024.
Accessed: 2024-07-05.

[13] Bridge network driver. https://docs.docker.com/
network/drivers/bridge/, 2024.

[14] concurrent.futures — launching parallel
tasks. https://docs.python.org/3/library/
concurrent.futures.html#concurrent.futures.
ProcessPoolExecutor, 2024.

[15] Docker. https://www.docker.com/, 2024. Accessed:
2024-11-16.

[16] Fcc denies starlink low-orbit bid for lower
latency. https://spectrum.ieee.org/
starlink-vleo-below-iss, 2024. Accessed:
2024-06-23.

[17] Global interpreter lock, or gil. https://wiki.python.
org/moin/GlobalInterpreterLock, 2024. Accessed:
2024-11-16.

[18] In flight wi-fi market analysis. https://www.
coherentmarketinsights.com/market-insight/
in-flight-wi-fi-market-3806, 2024. Accessed:
2024-07-01.

[19] International satellite coordina-
tion. https://www.fcc.gov/space/
international-satellite-coordination, 2024.
Accessed: 2024-07-03.

[20] Mininet. https://mininet.org/, 2024. Accessed:
2024-11-16.

[21] Modification authorization spacex. https:
//fcc.report/IBFS/SAT-MOD-20200417-00037/
2274315.pdf, 2024. Accessed: 2024-07-05.

[22] ns-3 network simulator. https://www.nsnam.org/,
2024. Accessed: 2024-11-16.

[23] Oneweb targets maritime market with expanded
satellite coverage. https://tinyurl.com/
OneWebTargetsMaritimeMarket, 2024. Accessed:
2024-11-16.

[24] Regulation of ngso satellite constella-
tions. https://digitalregulation.org/
regulation-of-ngso-satellite-constellations/,
2024. Accessed: 2024-07-03.

[25] Scipy, fundamental algorithms for scientific computing
in python. https://scipy.org/, 2024. Accessed:
2023-12-06.

[26] Spacex v-band non-geostationary satel-
lite system. https://fcc.report/IBFS/
SAT-LOA-20170301-00027/1190019.pdf, 2024.
Accessed: 2024-07-03.

[27] Starlink disrupting greenland internet market. https://
tinyurl.com/StarlinkDisruptingGreenland, 2024.
Accessed: 2024-06-23.

[28] Starlink expands coverage. https://tinyurl.com/
StarlinkExpandsCoverage, 2024. Accessed: 2024-
06-23.

[29] Starlink internet service goes live in alaska. https:
//tinyurl.com/StarlinkServiceLiveAlaska, 2024.
Accessed: 2024-06-23.

802 2025 USENIX Annual Technical Conference USENIX Association

https://tinyurl.com/FCCKuiperSystems
https://tinyurl.com/FCCKuiperSystems
http://tinyurl.com/starlinkAddISLs
https://tinyurl.com/Gen2Approval
https://tinyurl.com/Gen2Approval
https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf
https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf
https://tinyurl.com/KuiperTestsISLLEO
https://tinyurl.com/KuiperTestsISLLEO
https://tinyurl.com/MynaricSelected
https://tinyurl.com/MynaricSelected
https://tinyurl.com/MynaricReleases/
https://tinyurl.com/MynaricReleases/
https://fcc.report/IBFS/SAT-MPL-20200526-00062/2379706.pdf
https://fcc.report/IBFS/SAT-MPL-20200526-00062/2379706.pdf
https://tinyurl.com/CONDORMk3
https://tinyurl.com/CONDORMk3
https://fcc.report/IBFS/SAT-MOD-20190830-00087/1877671.pdf
https://fcc.report/IBFS/SAT-MOD-20190830-00087/1877671.pdf
https://tinyurl.com/starlinkISL
https://fcc.report/IBFS/SAT-MPL-20200526-00053/2378318.pdf
https://fcc.report/IBFS/SAT-MPL-20200526-00053/2378318.pdf
https://docs.docker.com/network/drivers/bridge/
https://docs.docker.com/network/drivers/bridge/
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor
https://www.docker.com/
https://spectrum.ieee.org/starlink-vleo-below-iss
https://spectrum.ieee.org/starlink-vleo-below-iss
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://www.coherentmarketinsights.com/market-insight/in-flight-wi-fi-market-3806
https://www.coherentmarketinsights.com/market-insight/in-flight-wi-fi-market-3806
https://www.coherentmarketinsights.com/market-insight/in-flight-wi-fi-market-3806
https://www.fcc.gov/space/international-satellite-coordination
https://www.fcc.gov/space/international-satellite-coordination
https://mininet.org/
https://fcc.report/IBFS/SAT-MOD-20200417-00037/2274315.pdf
https://fcc.report/IBFS/SAT-MOD-20200417-00037/2274315.pdf
https://fcc.report/IBFS/SAT-MOD-20200417-00037/2274315.pdf
https://www.nsnam.org/
https://tinyurl.com/OneWebTargetsMaritimeMarket
https://tinyurl.com/OneWebTargetsMaritimeMarket
https://digitalregulation.org/regulation-of-ngso-satellite-constellations/
https://digitalregulation.org/regulation-of-ngso-satellite-constellations/
https://scipy.org/
https://fcc.report/IBFS/SAT-LOA-20170301-00027/1190019.pdf
https://fcc.report/IBFS/SAT-LOA-20170301-00027/1190019.pdf
https://tinyurl.com/StarlinkDisruptingGreenland
https://tinyurl.com/StarlinkDisruptingGreenland
https://tinyurl.com/StarlinkExpandsCoverage
https://tinyurl.com/StarlinkExpandsCoverage
https://tinyurl.com/StarlinkServiceLiveAlaska
https://tinyurl.com/StarlinkServiceLiveAlaska

[30] Starlink’s laser system. https://tinyurl.com/
StarlinkLaserSystem, 2024. Accessed: 2024-06-23.

[31] Telesat low earth orbit non-geostationary satel-
lite system. https://fcc.report/IBFS/
SAT-MPL-20200526-00053/2378320.pdf, 2024.
Accessed: 2024-07-05.

[32] threading — thread-based parallelism. https://docs.
python.org/3/library/threading.html, 2024. Ac-
cessed: 2024-11-16.

[33] Unofficial sdk for flightradar24 for python 3. https:
//pypi.org/project/FlightRadarAPI/, 2024. Ac-
cessed: 2024-06-23.

[34] World cities database. https://simplemaps.com/
data/world-cities, 2024. Accessed: 2024-07-01.

[35] Leocraft source code. https://github.com/
suvambasak/LEOCraft.git, 2025. Accessed: 2025-
01-01.

[36] Mercator projection wiki. https://en.wikipedia.
org/wiki/Mercator_projection, 2025.

[37] R. Akturan and W.J. Vogel. Path diversity for leo
satellite-pcs in the urban environment. IEEE Transac-
tions on Antennas and Propagation, 45(7):1107–1116,
1997.

[38] Shahram Amiri and Brian Reif. Internet penetration and
its correlation to gross domestic product: An analysis of
the nordic countries. International Journal of Business,
Humanities and Technology, 3(2):50–60, 2013.

[39] Arthur H Ballard. Rosette constellations of earth satel-
lites. IEEE transactions on aerospace and electronic
systems, (5):656–673, 1980.

[40] Suvam Basak, Amitangshu Pal, and Debopam Bhat-
tacherjee. Exploring low-earth orbit network design.
In Proceedings of the 1st ACM Workshop on LEO Net-
working and Communication, pages 1–6, 2023.

[41] Jason H Bau. Topologies for satellite constellations in
a cross-linked space backbone network. PhD thesis,
Massachusetts Institute of Technology, 2002.

[42] Theresa W Beech, Stefania Cornara, Miguel Bell Mora,
and GD Lecohier. A study of three satellite constellation
design algorithms. In 14th international symposium on
space flight dynamics, 1999.

[43] Dhiraj Bhattacharjee, Aizaz U. Chaudhry, Halim
Yanikomeroglu, Peng Hu, and Guillaume Lamontagne.
Laser inter-satellite link setup delay: Quantification,
impact, and tolerable value. In 2023 IEEE Wireless
Communications and Networking Conference (WCNC),
pages 1–6, 2023.

[44] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi
Bozkurt, Anthony Aguirre, Balakrishnan Chan-
drasekaran, P Brighten Godfrey, Gregory Laughlin,
Bruce Maggs, and Ankit Singla. Gearing up for the 21st
century space race. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pages 113–119,
2018.

[45] Debopam Bhattacherjee and Ankit Singla. Network
topology design at 27,000 km/hour. In Proceedings
of the 15th International Conference on Emerging Net-
working Experiments And Technologies, pages 341–354,
2019.

[46] Vaibhav Bhosale, Ketan Bhardwaj, and Ahmed Saeed.
Astrolabe: Modeling rtt variability in leo networks. In
Proceedings of the 1st ACM Workshop on LEO Network-
ing and Communication, pages 7–12, 2023.

[47] Xuyang Cao and Xinyu Zhang. Satcp: Link-layer in-
formed tcp adaptation for highly dynamic leo satellite
networks. In IEEE INFOCOM 2023 - IEEE Conference
on Computer Communications, 2023.

[48] Michel Capderou. Orbit and ground track of a satellite.
Satellites: Orbits and Missions, pages 175–263, 2005.

[49] María García Colón, Elena Martínez Lizuain, Felix
Mora-Camino, and Antoine Drouin. Design of air corri-
dor structures for enhanced traffic performance. In 2016
IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), pages 1–7, 2016.

[50] Inigo Del Portillo, Bruce G Cameron, and Edward F
Crawley. A technical comparison of three low earth
orbit satellite constellation systems to provide global
broadband. Acta astronautica, 159:123–135, 2019.

[51] Karthick Dharmarajan. Coverage optimization of satel-
lite formations using instantaneous overlap area. In
2022 IEEE 9th International Workshop on Metrology
for AeroSpace (MetroAeroSpace), pages 582–587, 2022.

[52] John V Evans. Satellite systems for personal commu-
nications. Proceedings of the IEEE, 86(7):1325–1341,
1998.

[53] J. Fomon. Speedtest data. https://tinyurl.com/
ooklaReport, 2024. Accessed: 2024-06-23.

[54] Johan Garcia, Simon Sundberg, Giuseppe Caso, and
Anna Brunstrom. Multi-timescale evaluation of starlink
throughput. In Proceedings of the 1st ACM Workshop
on LEO Networking and Communication, pages 31–36,
2023.

[55] Mark Handley. Delay is not an option: Low latency rout-
ing in space. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, pages 85–91, 2018.

USENIX Association 2025 USENIX Annual Technical Conference 803

https://tinyurl.com/StarlinkLaserSystem
https://tinyurl.com/StarlinkLaserSystem
https://fcc.report/IBFS/SAT-MPL-20200526-00053/2378320.pdf
https://fcc.report/IBFS/SAT-MPL-20200526-00053/2378320.pdf
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://pypi.org/project/FlightRadarAPI/
https://pypi.org/project/FlightRadarAPI/
https://simplemaps.com/data/world-cities
https://simplemaps.com/data/world-cities
https://github.com/suvambasak/LEOCraft.git
https://github.com/suvambasak/LEOCraft.git
https://en.wikipedia.org/wiki/Mercator_projection
https://en.wikipedia.org/wiki/Mercator_projection
https://tinyurl.com/ooklaReport
https://tinyurl.com/ooklaReport

[56] Mark Handley. Using ground relays for low-latency
wide-area routing in megaconstellations. In Proceedings
of the 18th ACM Workshop on Hot Topics in Networks,
pages 125–132, 2019.

[57] Pierre Hansen, Nenad Mladenović, and Jose A
Moreno Perez. Variable neighbourhood search: meth-
ods and applications. Annals of Operations Research,
175:367–407, 2010.

[58] Yannick Hauri, Debopam Bhattacherjee, Manuel Gross-
mann, and Ankit Singla. " internet from space" without
inter-satellite links. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, pages 205–211,
2020.

[59] Felix R Hoots and Ronald L Roehrich. Models for
propagation of NORAD element sets. Office of Astrody-
namics, 1980.

[60] Syed Kamrul Islam and Mohammad Rafiqul Haider.
Sensors and low power signal processing. Springer
Science & Business Media, 2009.

[61] Spacex preparing to start starlink gen2 launches this
month, 2022. https://spacenews.com/spacex-preparing-
to-start-starlink-gen2-launches-this-month/.

[62] David S Johnson, Jan Karel Lenstra, and AHG Rinnooy
Kan. The complexity of the network design problem.
Networks, 8(4):279–285, 1978.

[63] Mohamed M Kassem and Nishanth Sastry. x eoverse:
A real-time simulation platform for large leo satellite
mega-constellations. In 2024 IFIP Networking Confer-
ence (IFIP Networking), pages 1–9. IEEE, 2024.

[64] Simon Kassing, Debopam Bhattacherjee, André Bap-
tista Águas, Jens Eirik Saethre, and Ankit Singla. Ex-
ploring the" internet from space" with hypatia. In Pro-
ceedings of the ACM Internet Measurement conference,
pages 214–229, 2020.

[65] John D Kiesling. Land mobile satellite systems. Pro-
ceedings of the IEEE, 78(7):1107–1115, 1990.

[66] Kenneth Chun Hei Kwok. Cost optimization and routing
for satellite network constellations. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

[67] Zeqi Lai, Hewu Li, Yangtao Deng, Qian Wu, Jun Liu,
Yuanjie Li, Jihao Li, Lixin Liu, Weisen Liu, and Jianping
Wu. {StarryNet}: Empowering researchers to evaluate
futuristic integrated space and terrestrial networks. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 1309–1324, 2023.

[68] Zeqi Lai, Hewu Li, and Jihao Li. Starperf: Char-
acterizing network performance for emerging mega-
constellations. In 2020 IEEE 28th International Confer-
ence on Network Protocols (ICNP), pages 1–11. IEEE,
2020.

[69] HG Lewis and G Skelton. Safety considerations for
large constellations of satellites. LPI Contributions,
2852:6099, 2023.

[70] Wenhao Lu, Zhiyuan Wang, Shan Zhang, Qingkai Meng,
and Hongbin Luo. Opensn: An open source library for
emulating leo satellite networks. In Proceedings of the
8th Asia-Pacific Workshop on Networking, pages 149–
155, 2024.

[71] R David Luders. Satellite networks for continuous zonal
coverage. ARS Journal, 31(2):179–184, 1961.

[72] Joseph Mclaughlin, Jee Choi, and Ramakrishnan Du-
rairajan. × grid: A location-oriented topology design
for leo satellites. In Proceedings of the 1st ACM Work-
shop on LEO Networking and Communication, pages
37–42, 2023.

[73] Rositsa Miteva, Susan W Samwel, and Stela Tkatchova.
Space weather effects on satellites. Astronomy, 2(3):165–
179, 2023.

[74] Nenad Mladenović and Pierre Hansen. Variable neigh-
borhood search. Computers & operations research,
24(11):1097–1100, 1997.

[75] Michael Nicolls and Darren McKnight. Collision risk
assessment for derelict objects in low-earth orbit. In
Proceedings of First International Orbital Debris Con-
ference, Sugar Land, TX, pages 9–12, 2019.

[76] Nils Pachler, Inigo del Portillo, Edward F Crawley, and
Bruce G Cameron. An updated comparison of four
low earth orbit satellite constellation systems to provide
global broadband. In 2021 IEEE international confer-
ence on communications workshops (ICC workshops),
pages 1–7. IEEE, 2021.

[77] L Rider. Optimized polar orbit constellations for re-
dundant earth coverage. Journal of the Astronautical
Sciences, 33:147–161, 1985.

[78] Jakub Řípa, Giuseppe Dilillo, Riccardo Campana, and
Gábor Galgóczi. A comparison of trapped particle mod-
els in low earth orbit. In Space Telescopes and Instru-
mentation 2020: Ultraviolet to Gamma Ray, volume
11444, pages 597–606. SPIE, 2020.

[79] Matthew Roughan. Simplifying the synthesis of internet
traffic matrices. ACM SIGCOMM Computer Communi-
cation Review, 35(5):93–96, 2005.

804 2025 USENIX Annual Technical Conference USENIX Association

[80] John P Rula, James Newman, Fabián E Bustamante,
Arash Molavi Kakhki, and David Choffnes. Mile high
wifi: A first look at in-flight internet connectivity. In
Proceedings of the 2018 world wide web conference,
pages 1449–1458, 2018.

[81] Georgios Sermpinis, Konstantinos Theofilatos, Andreas
Karathanasopoulos, Efstratios F Georgopoulos, and
Christian Dunis. Forecasting foreign exchange rates
with adaptive neural networks using radial-basis func-
tions and particle swarm optimization. European Jour-
nal of Operational Research, 225(3):528–540, 2013.

[82] William Stallings. Data and computer communications.
Pearson Education India, 2007.

[83] Rainer Storn and Kenneth Price. Differential evolution–
a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization,
11:341–359, 1997.

[84] Arjun Tan. Theory of Orbital motion. World Scientific,
2008.

[85] Constantino Tsallis and Daniel A Stariolo. Generalized
simulated annealing. Physica A: Statistical Mechanics
and its Applications, 233(1-2):395–406, 1996.

[86] Joshi Om Vaibhav, Lee Xun Yong, and Samuel Joo Jian
Wen. In-orbit lifetime of satellites.

[87] John Gerard Walker. Circular orbit patterns provid-
ing continuous whole earth coverage. Royal Aircraft
Establishment, Ministry of Aviation Supply, 1970.

[88] Bingsen Wang, Xiaohui Zhang, Shuai Wang, Li Chen,
Jinwei Zhao, Jianping Pan, Dan Li, and Yong Jiang. A
large-scale ipv6-based measurement of the starlink net-
work. arXiv preprint arXiv:2412.18243, 2024.

[89] Lloyd Wood. Internetworking with satellite constella-
tions. University of Surrey (United Kingdom), 2001.

[90] William W Wu, Edward F Miller, Wilbur L Pritchard,
and Raymond L Pickholtz. Mobile satellite commu-
nications. Proceedings of the IEEE, 82(9):1431–1448,
1994.

[91] Jin Y Yen. Finding the k shortest loopless paths in a
network. management Science, 17(11):712–716, 1971.

[92] Wenyi Zhang, Zihan Xu, and Sangeetha Abdu Jyothi.
An in-depth investigation of leo satellite topology de-
sign parameters. In Proceedings of the 2nd Interna-
tional Workshop on LEO Networking and Communica-
tion, pages 1–6, 2024.

[93] Wenyi Morty Zhang, Zihan Xu, and Sangeetha Abdu
Jyothi. A deep dive into leo satellite topology design
parameters. In International Conference on Passive and
Active Network Measurement, pages 247–275. Springer,
2025.

A Appendix

A.1 Comparison across various constellations

All LEO satellite network operators have proposed a wide
variety of constellations so far. So, in this section, we evaluate
the performance characteristics of different constellation de-
signs to illustrate how different types of constellation designs
impact performance. For that, we pick three shell configura-
tions of different LEO operators shown in Table 1, i.e., (a)
Kuiper’s third shell, which is a relatively smaller shell of 784
satellites at a low inclination of 33◦, (b) OneWeb’s first shell3,
which is a moderate size shell of 1,764 satellites at polar in-
clination of 87.9◦ and relatively higher altitude of 1,200 km,
and (c) Starlink Gen2’s first shell, which is a large shell of
5,280 satellites at VLEO of altitude 340 km. These three
shells cover a wide variety of constellation design choices
at different altitudes and inclinations. Through detailed sim-
ulations, we observed that the performance characteristics
of these shells with different TMs (§2.3) are consistent with
each other, while varying one or more constellation design
parameters, whereas others are kept at their default value as
mentioned in Table 1. Therefore, for brevity, we restrict the
following discussion to High-population TM only.
Altitude (h): The throughput, coverage, stretch, and hop
count characteristics of these three shells while varying alti-
tude h are shown in Fig. 20. For most of these performance
metrics, all these constellations show similar characteristics.
The only difference that we can observe is how the through-
put trends change with altitude. Notice that Kuiper, with a
low satellite budget of 784, produces higher throughput at
relatively higher altitudes with larger coverages. In contrast,
Starlink Gen2 shell, with a large satellite budget of 5,280,
starts experiencing a decline in throughput and inflation in
stretch (latency) above 500 km (900 km for NS routes) of
altitude. This is evident since these large VLEO shells are
focused on low-latency connectivity [16].

Interestingly, for OneWeb, the throughput trend is a bit
odd as compared to others. This is because their operational
altitude is as high as 1,200 km, whereas the elevation is too
low at 5◦. Since their target is the commercial sector and
maritime market [23], their design is inclined towards offering
globally reachable connectivity rather than achieving high
performance for the population density.

3Notice that OneWeb does not have a plan for using ISL yet, but is open to
incorporate it in future generations of satellites [8]. Therefore, in our analysis,
we study +Grid ISL topology for OneWeb as well.

USENIX Association 2025 USENIX Annual Technical Conference 805

(a) Throughput (b) Coverage

(c) Stretch (Kuiper) (d) Stretch (OneWeb) (e) Stretch (Starlink)

(f) Hop counts (Kuiper) (g) Hop counts (OneWeb) (h) Hop counts (Starlink)

Fig. 20: (a) Throughput, (b) coverage (c)-(e) stretch and (f)-(h) hop counts measurement across most populous cities with varying altitude (h).

Inclination (i): The performance metrics of three constella-
tions while varying inclination i are shown in Fig. 21. Notice
that, except for OneWeb’s stretch, coverage, and hop count,
all other performance characteristics are consistent. Due to
OneWeb’s higher altitude with a low elevation angle, cover-
age and hop count do not show any noticeable impact due to
the inclination change. However, a low angle of inclination re-
stricts the availability of satellites near the equatorial regions
and inflates the stretch of NS and LG routes.

Elevation (e): We show the performance characteristics while
varying elevation e in Fig. 22. The performance metrics are
consistent. Only LG routes of OneWeb experience higher
stretch than usual due to a single satellite hop at an altitude of
1,200+ km between the nearby GS pairs.

Number of orbits (o) and phase offset (p): Similarly, the
performance characteristics while varying the number of or-
bits o and phase offset p, are also consistent in Fig. 23 with
our previous discussion in §4.

Outcome:- The characteristics of various performance
metrics of different constellation sizes are pretty similar
and predictable. Thus, knowledge of the search space
in §4 could be used to intuitively trim the search space
for different constellation sizes as well.

A.2 Comparison of traffic metrics

All the results discussed previously in §4 and in §A.1 are
simulated with High population TM. In Fig. 24, we illustrate
how performance characteristics change with other TMs for
the first Starlink shell (Table 1). Since demands are concen-
trated in the regions with higher population density, we have
observed that overall performance measurement characteris-
tics are similar for all TMs across all the constellation design
parameters. Therefore, we only demonstrate the impact of
inclination i and elevation angle e here for brevity. Notice that
the throughput for High population TM and High GDP popu-
lation TM overlaps for both i and e in Fig. 24(a)-(b) except for
the lower inclination. Since countries with high populations
and lower GDP are mostly located close to Earth’s Equators
(i.e., lower latitude lines), lower inclination provides slightly
higher throughput for High population TM. Whereas for Coun-
try capital TM, the constellation consistently provides higher
throughput than the other TMs irrespective of the values of i
and e. The GSes for Country capital TM are sparsely located
across the capital of 233 countries, they do not experience
much congestion around multiple high population/GDP cities
located closely in China, India, USA, and Europe.

On the other hand, Global flight TM throughput measure-
ments are consistently lower than other TMs. Our dataset
includes total 8,384 flights on the air (> 10,000 feet altitude)

806 2025 USENIX Annual Technical Conference USENIX Association

(a) Throughput (b) Coverage

(c) Stretch (Kuiper) (d) Stretch (OneWeb) (e) Stretch (Starlink)

(f) Hop counts (Kuiper) (g) Hop counts (OneWeb) (h) Hop counts (Starlink)

Fig. 21: (a) Throughput, (b) coverage, (c)-(e) stretch, and (f)-(h) hop counts measurement across most populous cities while varying inclination angle (i).

worldwide. Therefore, in regions with a high air traffic density,
each satellite serves the demand of 100+ flights, and the GSL
bandwidth is divided among these; thus, the throughput de-
teriorates. Only Starlink’s first shell of 1,584 satellites could
not cope with this many flights. Nevertheless, the overall be-
haviors of the throughput measurement are the same, as most
flight densities are of the domestic flights in the USA, Europe,
and the eastern part of China within the airspace of 20◦ N to
55◦ N latitude lines. All international air traffic follows a few
specific flight corridors [49] to cross the Atlantic and Pacific
oceans within latitude lines 70◦ N to 5◦ N and 60◦ N to 30◦ S,
respectively, where the flight density is significantly sparser
than domestic flight. Thus, the throughput is relatively low
towards lower and polar inclinations.

Apart from throughput, characteristics of other perfor-
mance metrics are also consistent across all the orbital param-
eters. Again, for brevity, we only show the coverage and NS
routes median stretch measurement with i and e in Fig. 24(c)-
(d) and Fig. 24(e)-(f), respectively.

Outcome:- The characteristics of various performance
metrics with different constellation parameters remain
consistent with different traffic demands. Therefore, the
proposed search strategy in (§5) is also generalizable
and applicable to different target markets.

A.3 Visualization with LEOCraft

In this section, we provide an overview of the visualization
capabilities of LEOCraft. Ideally, LEOCraft generates 2D and
3D interactive views to inspect LEO constellations. However,
we use some snapshots of interactive views to demonstrate
various features and aspects of LEO constellation networks.

Multi-shell LEO constellation: LEOCraft can generate a
multi-shell LEO network topology. Fig. 25 shows some
snapshots of the Starlink [10] and Telesat [12] constella-
tions, whereas Kuiper [1] constellation is already depicted in
Fig. 1(b). In these figures, the color distinguishes different
shells in the constellation, where the dots represent satellites,
and the lines represent the ISLs. Notice that the characteristic
of having one shell at a relatively higher inclination (≥ 60◦)
is consistent for most of these proposed designs. For example,
in Fig. 25, Starlink Gen1’s blue shell and Telesat red shell
have inclinations of 70◦ and 98.98◦ respectively. OneWeb’s
and Starlink Gen2 also have shells at inclinations of 87.9◦,
and 96.9◦ respectively, as shown in Table 1. Our simulation
results in §4 discuss the effects of inclination angle to demon-
strate the trade-off between throughput and global coverage,
i.e., higher inclination gives more Earth surface coverage at
higher latitudes, whereas lower inclination provides better
throughput to the well-populated areas with limited coverage
at higher (polar) latitudes. We speculate that the LEO constel-

USENIX Association 2025 USENIX Annual Technical Conference 807

(a) Throughput (b) Coverage

(c) Stretch (Kuiper) (d) Stretch (OneWeb) (e) Stretch (Starlink)

(f) Hop counts (Kuiper) (g) Hop counts (OneWeb) (h) Hop counts (Starlink)

Fig. 22: (a) Throughput, (b) coverage, (c)-(e) stretch, and (f)-(h) hop counts measurement across most populous cities with varying elevation angle (e).

(a) Kuiper (b) OneWeb (c) Starlink

Fig. 23: Changes in the number of orbits (o) and phase offset (p) for all shells with GSes across the most populous cities show similar throughput characteristics.

lation operator tries to address the issue by deploying multiple
shells for targeting different regions of interest. They deploy
a shell at a higher inclination (≥ 60◦) to address the coverage
at higher latitudes, whereas multiple shells are deployed at
lower inclinations to address the demand at densely populated
areas.

Route evolution over time: LEO satellites orbit the Earth at
a very high velocity of ∼ 27,000 kmph [45]. Therefore, the
route between two endpoints (i.e., user terminal or gateway
ground station) on the Earth’s surface continuously evolves
over time. LEOCraft can be used to visualize such evolu-
tion of routes between any pair of GSes over a granularity
of nanoseconds. In Fig. 26, we show the snapshots of the
evolving shortest paths between Bengaluru, India, and Tokyo,
Japan, at different time instances. In this particular example
scenario, we can observe that the shortest route between the

end-points experiences a route length variation of above 1000
km over just 100 seconds. This leads to abrupt RTT changes,
which are also visible for other routes, as discussed previously
in Fig. 18(a)-(b).

Coverage and route change due to altitude variation:
LEOCraft allows inspection of the coverage area of a con-
stellation at individual satellite levels with red-shaded circles
beneath it. In Fig. 27, we illustrate the same with the short-
est route between Bengaluru, India, and Tokyo, Japan, over
the ISL of Starlink’s first shell. In this illustration, we only
focus on the coverage of ingress and egress satellites. As we
increase the altitude of the shell from the default height (i.e.,
550 km) to 1,000 km, the coverage area of the satellite (high-
lighted for ingress and egress points only) increases. Thus, the
two endpoints choose satellites closer to each other to form
the shortest route, reducing the end-to-end hop length from

808 2025 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

(d) (e) (f)

Fig. 24: (a)-(b) Throughput, (c)-(d) coverage, and (e)-(f) stretch measurements with different TMs while varying inclination and elevation angles show similar
characteristics.

(a) Equatorial view (b) Polar view (c) Equatorial view (d) Polar view

Fig. 25: Visualizing multi-shell LEO network topology proposed by (a)-(b) Starlink Gen1 [4] and (c)-(d) Telesat [12].

6 satellite hops to only 2 hops. Notice that in Fig. 27(b), the
coverage area of the satellite at the higher latitude appears to
be larger than at the lower latitude due to the 2D Mercator
projection [36].

Ground track of satellites: LEOCraft also helps in visual-
izing the ground track [48] of the satellites. Fig. 28 shows
the nadir, i.e., 90◦ projection of the satellites on the Earth’s
surface with the inclination of 50◦ and 80◦. The tracking for
120 minutes of both satellites starts at the same point. The
figure shows how these two satellites deviate from the starting
location after one orbit due to the rotation of Earth. From such
visualizations, we can also observe how the coverage regions
vary with the inclinations.

ISL utilization: LEOCraft can also be used to visualize
the ISL utilization of individual constellations. For exam-
ple, Fig. 29(d)-(f) shows the link utilization of Starlink’s first
shell, when the 100 populous cities communicate over the 20
shortest routes. We can extract the link selections and respec-
tive link usages in LEOCraft to render an interactive view of
link utilization using color codes, i.e. Unused, up to 20%, up
to 60%, up to 80%, above 80%.

From Fig. 29(d)-(f) we can observe that many ISLs above
the oceans are unused, especially over the Pacific Ocean in

Fig. 29(f). In general, ISL utilization is up to 20% since GSLs
are the main bottleneck in these LEO networks. However,
ISL utilization in the northern Pacific Ocean is pretty high
(up to and above 80%.) as these ISLs are carrying the traffic
between the US and the two most populated areas, i.e., India
and the Chain in Fig. 29(f).

We next repeat the same study with 233 GSes located
sparsely across the globe in the capital of countries, the results
are shown in Fig. 29(g)-(i). From these figures, we can ob-
serve that the ISL utilization is increased, whereas the number
of unused ISLs decreases significantly. A few ISLs are under
pretty high utilization above the oceans (such as the center of
the Atlantic, or the northwestern area of the Pacific) as they
carry the traffic between cross-continent population centers.
Such visualizations provide valuable insights about the links
or regions that experience network bottlenecks.

A.4 Additional comments

LEO Constellation design types: Previous works have clas-
sified satellite constellation designs into two types based on
their geometry [89]. The first one is Walker Star, where all
satellites in one hemisphere move towards the north pole,

USENIX Association 2025 USENIX Annual Technical Conference 809

(a) At epoch (b) After 47 seconds (c) After 60 seconds (d) After 100 seconds

Fig. 26: The shortest route from Bengaluru, India, to Tokyo, Japan, changes over time due to satellite movement, leading to the RTT fluctuations.

(a) h = 550 km (b) h = 1,000 km

Fig. 27: The shortest route from Tokyo to Bengaluru is reduced to two satellite hops as increasing the
altitude of the shell expands the coverage area of satellites, shown with ingress and egress satellite.

Fig. 28: The ground track over 120 minutes of two
satellites orbiting at inclinations of 50◦ and 80◦.

whereas in another hemisphere, these satellites move towards
the south pole. Hence, in the polar region, the movement of
the satellites creates a star shape while viewing from the
top [71, 77]. Satellite constellations are also designed in
Walker Delta structure, where orbits of less than 90◦ (likely)
inclination are equispaced across the entire Earth’s equatorial
plane; therefore, northwards and southwards movement of
satellites overlap across the globe. Such a design with three
orbits creates a triangular shape like the Greek alphabet ∆ at
the polar region while viewing from the top [39, 87]. There-
fore, the Walker star configuration provides dense coverage
in the polar region; on the other hand, the Walker delta config-
uration creates a coverage gap (if inclined below 90◦). Since
the main population centers are in lower latitudes, most of
the LEO constellations proposed for global Internet broad-
band fall under the category of Walker delta types. Therefore,
this work mainly focuses on the Walker delta types of con-
stellation design. However, extending LEOCraft to study the
Walker star design is possible with minimal effort due to its
modular design.

Impact of interference: In LEOCraft, we do not account
for the impact of interference since satellite constellations
deploy a multitude of interference mitigation techniques to

maximize the throughput offered per satellite. Well-known
schemes include dividing the terrestrial coverage area into
tessellation shapes or spots and then reusing frequencies by
assigning adjacent spots different non-overlapping frequency
bands. Starlink and Kuiper have extensive plans [1,26] beyond
such simple mitigation, which include (a) many steerable, sha-
peable beams with varying bandwidth, (b) multiple antennas
per satellite, each with multiple beams, (c) beam splitting and
merging to address interference as well as spatially varying
demands, etc.

A.5 Simulation using LEOCraft’s APIs

We provide a concise overview of evaluating the LEO con-
stellation using LEOCraft’s APIs, along with some code snip-
pets. Additionally, we illustrate the framework’s extensibility.
For readers interested in further details, LEOCraft’s reposi-
tory [35] includes comprehensive documentation.

Building a LEO constellation: To build a LEO constella-
tion, first create a path loss model for the GSLs with FSPL
instance as shown in Lst. 1, which uses the Ka band spec-
ification available in Starlink’s FCC filing [50]. Then, us-
ing LEOConstellation API, build a LEO constellation in-

810 2025 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 29: ISLs utilization above the (a) Atlantic, (b) India, and (c) Pacific Ocean show that most of the ISLs are Unused for (d)-(f) high population TM across 100
cities, whereas the utilization (up to 20%, 60%, 80%, and above 80%) has increased for (g)-(i) the country capital TM across the capital of 233 countries.

from LEOCraft.attenuation.fspl import FSPL

loss_model = FSPL(
28.5*1000000000, # Frequency in Hz
98.4, # Tx power dBm
0.5*1000000000, # Bandwidth Hz
13.6 # G/T ratio

)
loss_model.set_Tx_antenna_gain(gain_dB=34.5)

Listing 1: Building loss model

stance and add all the LEO network component instances like
GroundStation (builds GSes across cities), PlusGridShell
(builds all LEO satellites and +Grid ISLs) as shown in
Lst. 2. To simulate a multi-shell constellation, repeat the

add_shells() method with design parameters of the other
shells while increasing the id for each one. Followed by this,
add the instance of the path loss model created in Lst. 1, and
set the epoch before building and computing the routes across
all the GS pairs.
Evaluating a LEO constellation: Once the routes computa-
tion is complete, the instance of LEOConstellation can be
used to evaluate the throughput, stretch, and coverage using
the performance evaluation APIs of LEOCraft as shown in
Lst. 3. Notice that, unlike stretch and coverage, the throughput
instance needs the TMs across the GSes.
Evaluating a cohort of LEO design: In addition to
the above approaches, LEOCraft also provides a high-
level API – LEOConstellationSimulator to evaluate a
batch of LEO constellation designs. As shown in Lst. 4,

USENIX Association 2025 USENIX Annual Technical Conference 811

from LEOCraft.constellations.LEO_constellation import \
LEOConstellation

from LEOCraft.dataset import GroundStationAtCities
from LEOCraft.satellite_topology.plus_grid_shell import \

PlusGridShell
from LEOCraft.user_terminals.ground_station import \

GroundStation

leo_con = LEOConstellation('Starlink')
leo_con.add_ground_stations(

GroundStation(
GroundStationAtCities.TOP_100

)
)
leo_con.add_shells(

PlusGridShell(
id=0,
orbits=72,
sat_per_orbit=22,
altitude_m=550000.0,
inclination_degree=53.0,
angle_of_elevation_degree=25.0,
phase_offset=50.0,

)
)
leo_con.set_time(second=3)
leo_con.set_loss_model(loss_model)
leo_con.build()
leo_con.create_network_graph()
leo_con.generate_routes(k=20)

Listing 2: Building a LEO constellation

from LEOCraft.dataset import InternetTrafficAcrossCities
from LEOCraft.performance.basic.coverage import Coverage
from LEOCraft.performance.basic.stretch import Stretch
from LEOCraft.performance.basic.throughput import \

Throughput

th = Throughput(
leo_con,
InternetTrafficAcrossCities.ONLY_POP_100

)
th.build()
th.compute()

sth = Stretch(leo_con)
sth.build()
sth.compute()

cov = Coverage(leo_con)
cov.build()
cov.compute()

Listing 3: Evaluating throughput, latency/stretch, and coverage

LEOConstellationSimulator serves as the simulation ex-
ecution framework in LEOCraft. It queues all instances of
LEOConstellation and uses all the available CPUs on the
system to build the constellation and compute the routes,
throughput, stretch, and coverage. Finally, on evaluation com-
pletion, LEOConstellationSimulator writes back the re-
sults of each LEOConstellation in a file for further analysis.

Modularity: LEOCraft framework’s design offers superior

from LEOCraft.simulator.LEO_constellation_simulator import\
LEOConstellationSimulator

leo_1= LEOConstellation('LEOCON_1')
leo_1.add_ground_stations(

GroundStation(
GroundStationAtCities.TOP_100

)
)
leo_1.set_time(second=3)
leo_1.set_loss_model(get_loss_model())
leo_1.add_shells(

PlusGridShell(
id=0,
orbits=72,
sat_per_orbit=22,
altitude_m=1000.0*550.0,
inclination_degree=53.0,
angle_of_elevation_degree=25.0,
phase_offset=50,

)
)
... repeat for leo_2, leo_3, ..., leo_n
simulator = LEOConstellationSimulator(

InternetTrafficAcrossCities.POP_GDP_100,
'output.csv'

)
simulator.add_constellation(leo_1)
Repeat above line for leo_2, ..., leo_n
simulator.simulate_in_parallel(max_workers=3)

Listing 4: Evaluating a cohort of LEO constellation

extensibility. For instance, one can inherit PlusGridShell
and override just one method – build_ISLs(), to create
a XGridShell that evaluates the performance of the LEO
constellation with a ×Grid ISL topology [72]. Similarly,
Throughput, Stretch, Coverage can be inherited to over-
write the compute() method to implement other approaches
for the computation of these metrics. Hence, LEOCraft en-
ables further exploration of LEO design and optimization
strategies, addressing a wide range of objectives such as
routing policies, bandwidth allocations, traffic patterns, ISL
topologies, the number of antennas and their capabilities,
weather conditions, and much more.

B Artifact Appendix

Abstract

This artifact provides detailed instructions for setting up
LEOCraft simulation environments on Linux and macOS
platforms. The primary focus is on verifying the claims made
in the paper and reproducing the figures presented throughout.
Additionally, it offers guidance on extending the LEOCraft
project to experiment with traffic metrics, topology, routing,
and connectivity policies.

812 2025 USENIX Annual Technical Conference USENIX Association

Scope
This artifact includes straightforward steps to validate four
major claims of the paper – (i) execute a flow-level LEO
network simulation, (ii) optimize LEO constellation design
using search space heuristic, (iii) evaluate and simulate de-
signs for multi-shell LEO constellation, and (iv) interactive
visualization the LEO constellation network. In addition to
that, the GitHub repository hosts the LEOCraft’s source
code under the MIT License.

Contents
The GitHub repository provides the complete source code
for LEOCraft, accompanied by thorough documentation. The
Artifact Evaluation page documents the steps to execute
all experiments supporting the major claims of this paper.
Additional available contents are outlined below:
Examples: The repository contains a handful of example
Python scripts illustrating how LEOCraft can be pro-
grammed for different LEO network simulations and visu-
alization.
Evaluation of constellation with all TMs: The Fig. 20– 24
presents a summarized overview of the performance mea-
surements for various LEO constellations against different
TMs. The repository contains all the detailed performance
measurements for the proposed constellation, as highlighted
in Table 1, against all the TMs discussed in §2.3 for GSes and
flights.

Interactive visualization: The repository also contains an in-
teractive versions of LEO constellation design (Fig. 1(b), 25),
satellite coverage (Fig. 1(a), 4(b)-(c)), GSes location
(Fig. 7(a)), routes (Fig. 2, 8, 10, 13, 26, 27), ISL topology and
satellite trajectory changes (Fig. 7(b)-(d), 11), ground track
of satellites (Fig. 28), and ISL utilization (Fig. 29) inside
Visulization Examples.

Hosting
The source code of the LEOCraft under MIT License is
available at – github.com/suvambasak/LEOCraft.git.
The documentation of LEOCraft is available at –
suvambasak.github.io/LEOCraft/. The source code
and the documentation might be updated according to the
future release with new versions of LEOCraft. Additionally,
Artifact Evaluation page provides the straightforward
steps for reproducing the results of this paper.

Requirements
The LEOCraft uses the Gurobi Optimizer to solve the lin-
ear program to maximize throughput. Consequently, a valid
Gurobi license is required to use gurobipy for solving linear
programs. Additionally, we recommend using a multi-core
system with a minimum of 8 gigabytes of memory; how-
ever, having more computational resources helps LEOCraft
to execute faster.

USENIX Association 2025 USENIX Annual Technical Conference 813

https://github.com/suvambasak/LEOCraft.git
https://github.com/suvambasak/LEOCraft.git
https://suvambasak.github.io/LEOCraft/docs/ARTIFACT_EVALUATION.html
https://suvambasak.github.io/LEOCraft/examples/
https://suvambasak.github.io/LEOCraft/examples/
https://github.com/suvambasak/LEOCraft/tree/main/experiments/results/with_ground_stations
https://github.com/suvambasak/LEOCraft/tree/main/experiments/results/with_flights
https://suvambasak.github.io/LEOCraft/#leo-constellation-visulization-examples
https://github.com/suvambasak/LEOCraft.git
https://suvambasak.github.io/LEOCraft/
https://suvambasak.github.io/LEOCraft/docs/ARTIFACT_EVALUATION.html
https://www.gurobi.com/

	Introduction
	Background
	LEO constellation design parameters
	LEO network modelling and assumptions
	Internet traffic demand matrices
	Network performance metrics

	LEO network design from scratch
	Exploring the search space
	Shaping an optimization strategy
	Designing of LEOCraft
	Performance evaluation of LEOCraft
	Comparing LEOCraft with other platform
	Related work
	Conclusion and future work
	Appendix
	Comparison across various constellations
	Comparison of traffic metrics
	Visualization with LEOCraft
	Additional comments
	Simulation using LEOCraft's APIs

	Artifact Appendix

